
Measurement-Based	
Link Dimensioning	

for the Future Internet	

Ricardo de Oliveira Schmidt 	

Measurement-Based Link Dimensioning
for the Future Internet

Ricardo de Oliveira Schmidt

Graduation committee:

Chairman: Prof. Dr.ir. Job van Amerongen
Promoter: Prof. Dr.ir. Aiko Pras
Co-promoter: Prof. Dr. Hans van den Berg

Members:
Prof. Dr. Lisandro Z. Granville Federal University of Rio Grande do Sul, Brazil
Prof. Dr. George Pavlou University College London, UK
Dr. Ramin Sadre Université Catholique de Louvain, Belgium
Prof. Dr.ir. Lambert Nieuwenhuis University of Twente, The Netherlands
Prof. Dr.ir. Boudewijn Haverkort University of Twente, The Netherlands
Dr. Anna Sperotto University of Twente, The Netherlands

Funding sources:
EU FP7 UniverSelf – 257513
EU FP7 Flamingo Network of Excellence – 318488
EU FP7 Mobile Cloud Networking – 318109
SURFnet’s GigaPort3 project for Next-Generation Networks

CTIT Ph.D. thesis Series No. 14-334
Centre for Telematics and Information Technology
P.O. Box 217, 7500 AE
Enschede, the Netherlands

ISBN 978-90-365-3798-8
ISSN 1381-3617 (CTIT Ph.D. thesis Series No. 14-334)
DOI 10.3990/1.9789036537988

http://dx.doi.org/10.3990/1.9789036537988

Type set with LATEX. Printed by Gildeprint Drukkerijen.

This work is licensed under a Creative Commons

Attribution-NonCommercial-ShareAlike 3.0 Unported License.

http://creativecommons.org/licenses/by-nc-sa/3.0/

MEASUREMENT-BASED LINK
DIMENSIONING FOR THE FUTURE

INTERNET

PROEFSCHRIFT

ter verkrijging van
de graad van doctor aan de Universiteit Twente,

op gezag van de rector magnificus,
prof. dr. H. Brinksma,

volgens besluit van het College voor Promoties,
in het openbaar te verdedigen

op woensdag 26 november 2014 om 16:45 uur

door

Ricardo de Oliveira Schmidt

geboren op 02 april 1985
te Passo Fundo-RS, Brazilië

Dit proefschrift is goedgekeurd door:
Prof. Dr. ir. Aiko Pras (promotor)
Prof. Dr. Hans van den Berg (co-promotor)

Look again at that dot. That’s here. That’s home. That’s us. On it

everyone you love, everyone you know, everyone you ever heard of, every hu-

man being who ever was, lived out their lives. The aggregate of our joy and

suffering, thousands of confident religions, ideologies, and economic doctrines,

every hunter and forager, every hero and coward, every creator and destroyer of

civilization, every king and peasant, every young couple in love, every mother

and father, hopeful child, inventor and explorer, every teacher of morals, every

corrupt politician, every ’superstar,’ every ’supreme leader,’ every saint and sinner

in the history of our species lived there – on a mote of dust suspended in a sunbeam.

— Carl Sagan,
Pale Blue Dot: A Vision of the Human Future in Space, 1994

Acknowledgments

My sincere thanks to all that somehow were involved in this PhD thesis or that
were part of my life during the last four years. Special thanks to my supervisors
Aiko and Hans for guiding me during the PhD research, and to my family for
supporting my professional decisions.

And of course, I could not forget the little green man from Mars: thank you.

Abstract

Network operators have observed a significant increase in traffic demand in the
past decade. That is because the Internet is now ubiquitous and provides means
to access services essential to our daily life. To accommodate these traffic de-
mands, operators over-provision their networks using simple rules of thumb for
link dimensioning. However, throwing more link capacity in the network is not
always a viable solution due to operational and financial constraints. Although
the amount of link resources will likely not be a problem in the future Internet,
the management of these resources will become more important. The current
trend on virtualizing services and networks enables us to foresee how virtualiza-
tion will soon dominate the Internet. Network operators will still own most of
the physical infrastructure, but end users will be directly connected to companies
that control essential online services and retain users’ content. These companies
are often referred to as the Internet big players. Virtual networks will enable
transparent and seamless connection between end users and big players. The
coexistence of many virtual networks on top of a single physical infrastructure
will push for more sophisticated approaches to fairly share and allocate network
resources. Efficient and accurate link dimensioning approaches can certainly
make the difference in this context. Such approaches can (i) support operators
on the optimal allocation of their link resources, while (ii) ensuring that Quality
of Service metrics agreed with the big players are met, ultimately (iii) providing
end users with good levels of Quality of Experience.

Focusing on proper allocation of link resources in the future Internet, in this
thesis we develop and validate approaches for link dimensioning that are easy-
to-use and accurate. Our starting point is an accurate and already validated
dimensioning formula from previous works, which requires traffic statistics that
can be calculated from continuous packet captures. However, packet captures
are expensive and often demand dedicated hardware/software. Our approaches
are able to estimate needed traffic statistics from coarser measurement data,
namely sampled packets and flow-level measurements. Technologies able to
provide us with such measurement data are largely available in network devices
nowadays, namely sFlow, NetFlow/IPFIX and the more recent OpenFlow. The
main contributions of this thesis can be divided in three parts.

x

The dimensioning formula we use is built upon the assumption of Gaussian
traffic. In the past few years the advent of new online services, from social
networking to online storage and video streaming, reshaped the behavior of
network users. Past works that assessed Gaussian character of traffic relied
on data measured relatively long ago, before these new services became highly
popular. Therefore, our first contribution is an extensive investigation of the
Gaussian character of current network traffic. We show that the assumption
of Gaussian traffic remains valid and, hence, the dimensioning formula is still
applicable to today’s traffic. Moreover, in contrast to conclusions from previous
works, we proved that traffic Gaussianity is closely related to measured traffic
rates and independent of the number of simultaneously active hosts.

Aiming at ease of use, our proposed approaches for link dimensioning use
data measured with largely available technologies in today’s network devices.
These technologies provide coarser data than plain packet captures, but also
give us much more information than, e.g., interface counters. As the second
contribution of this thesis, therefore, we develop and validate approaches to
estimate traffic statistics needed for the dimensioning formula from coarser traf-
fic measurement data. In particular, we develop approaches to estimate traffic
statistics from sampled packets obtained from sFlow, or similar packet sam-
pling tools. These approaches account for the missing information (i.e., skipped
packets) and the random nature of the sampling algorithms. We also propose
approaches that overcome the problem of data aggregation in flow-level mea-
surements from NetFlow/IPFIX, or similar tools. To estimate the needed traffic
statistics from flows, these flow-based approaches account for the missing infor-
mation on individual packets. The proposed approaches in this thesis are able to
accurately estimate required capacity at timescales from milliseconds to seconds.

Finally, the recent Software-Defined Networking (SDN) architecture claims
to be ideal for managing dynamic network applications. OpenFlow is the best
known enabler of SDN and it is already widely available in network devices.
Although OpenFlow is primarily a traffic forwarding technology, in theory, it
can also measure flow data as needed by our flow-based link dimensioning ap-
proaches (i.e., NetFlow/IPFIX style). In practice, however, measured data from
current implementations of OpenFlow are of poor quality. As the third contribu-
tion of this thesis, we introduce an approach to retrieve measured data from the
OpenFlow switch, using the OpenFlow protocol, for purposes of link dimension-
ing. In addition, we assess the quality of measured data from OpenFlow both in
a physical setup, using a real OpenFlow switch, and in a virtual setup, running a
commonly used open source OpenFlow implementation. Results collected from
our experiments lead us to conclude that measured data in OpenFlow is not yet
suitable for link dimensioning.

Contents

1 Introduction 3
1.1 Background . 3
1.2 Link Dimensioning Overview . 6
1.3 Thesis Contribution . 10
1.4 Link Dimensioning Formula . 11
1.5 Goal, Research Questions & Approaches 14
1.6 Thesis Organization . 17

2 Datasets and Traffic Characteristics 23
2.1 Measurements & Monitoring Overview 24
2.2 Converting Packet Captures . 25
2.3 Description of Measurements Datasets 26
2.4 Overall Traffic Gaussianity Assessment 29
2.5 Causes of Bad Gaussian Fit . 41
2.6 Concluding Remarks . 48

3 sFlow-based Link Dimensioning 51
3.1 Background . 52
3.2 sFlow Monitoring Tool . 53
3.3 Alternative Sampling Methods 57
3.4 Estimating Traffic Variance . 58
3.5 Experimental Results . 61
3.6 Impact of the sFlow Exporting Process on Link Dimensioning . . 73
3.7 Concluding Remarks . 77

4 Pure Flow-based Link Dimensioning 83
4.1 Background . 84
4.2 Flow-based Approach . 89
4.3 Experimental Results . 91
4.4 Concluding Remarks . 99

xii CONTENTS

5 Hybrid Flow-based Link Dimensioning 103
5.1 Motivation & Challenges . 104
5.2 Models Definition . 104
5.3 Flow Classification . 107
5.4 Overview of the Proposed Procedure 108
5.5 Experimental Results . 110
5.6 Operational Considerations and Selection of Parameters 123
5.7 Concluding Remarks . 126

6 OpenFlow-based Link Dimensioning 129
6.1 Background . 130
6.2 OpenFlow . 131
6.3 OpenFlow-based Approach . 137
6.4 OpenFlow Traffic Measurements 139
6.5 Concluding Remarks . 146

7 Conclusions 149
7.1 Overview . 149
7.2 Main Conclusions . 150
7.3 Positioning of the Proposed Approaches 152
7.4 Summary of Contributions . 155
7.5 Future Research . 157

A Estimating Variance from Sampled Packets 159
A.1 Estimating Traffic Variance with Bernoulli Sampling 159
A.2 Estimating Traffic Variance with 1-in-N and sFlow Sampling . . 160

B Variance from flows with constant duration 161

C Flow models for different packet arrival processes 163
C.1 Flow model with poisson packet arrival 163
C.2 Flow model with bursty packet arrival 165

Bibliography 167

Acronyms 177

About the author 179

For millions of years mankind lived just like the animals. Then something

happened which unleashed the power of our imagination. We learned to talk.

— Stephen Hawking, 1994
In: Keep Talking, Pink Floyd.

CHAPTER 1

Introduction

This chapter presents background information and motivates the research

of this Ph.D. thesis, details our research goal and questions, and outlines

the thesis structure.

1.1 Background

The Internet has become an essential tool for the modern society. It is ubiq-
uitous and offers a plethora of online services accessible via a huge diversity
of interconnected devices. Network operators need to cope with the “ever in-
creasing” demand of network traffic. Figure 1.1 gives an idea of today’s traffic
volume and enables us to image what traffic demands for the near future will be.
This figure shows the total volume of in/out transit traffic at the Amsterdam
Internet Exchange (AMS-IX) in the past years, which clearly has experienced
an exponential-like growth from 2.7 PB in 2002 to 1.2 EB (exabytes) in 20141.

 0

 200

 400

 600

 800

 1000

 1200

Ja
n/

20
02

Ja
n/

20
03

Ja
n/

20
04

Ja
n/

20
05

Ja
n/

20
06

Ja
n/

20
07

Ja
n/

20
08

Ja
n/

20
09

Ja
n/

20
10

Ja
n/

20
11

Ja
n/

20
12

Ja
n/

20
13

Ja
n/

20
14

 1 2 3 4 5 6 7 8 9 10 11 12 13

vo
lu

m
e

 o
f
in

/o
u

t
tr

a
ff
ic

 in
 P

B

period

Figure 1.1: Volume of in/out traffic at AMS-IX from 2002 to 2014.

1https://www.ams-ix.net/technical/statistics

4 Introduction

In addition to the increasing traffic demands, the somehow disorganized
(non-structured) growth of the Internet comes to add complexity to the network
management. In some cases, traffic demands can be provisioned by simply
throwing in more resources into the network infrastructure. However, this might
not always be a viable solution due to, e.g., financial or operational constraints.

The trend towards virtualization of networks and services allows us to foresee
that the complex task of managing networks in the future Internet will call for
approaches to support optimal allocation of network resources. Next we describe
what we envision as one of the scenarios of the future Internet, where excessive
use of network virtualization will aim at seamless services for end users.

A scenario of the Future Internet

The Internet is becoming more and more dominated by a small number of
big players [52]. These are companies that own essential online services, store
users’ content and are also dominating the mobile market (e.g., Apple with
iOS, Google with Android and Microsoft with Windows Phone). Retaining the
content produced and shared by users, often compelling a fidelity relationship
is what gives the big players the power to decide how the Internet should work.
Examples of big players are Google, Microsoft, Akamai, Facebook, and the rising
Dropbox and Netflix.

Our view of the future Internet is that the direct relationship between big
players and the end users will narrow. Although network operators will still own
(most of) the infrastructure, even the Internet access might become part of the
services offered by big players. This will eliminate the intermediate relationship
between end users and network operators.

Figure 1.2a shows how the relationship between the end user, network opera-
tor (in this example Deutsche Telekom) and big players (in this example Google
and NetFlix) works nowadays. The only way the end user can reach services
offered by the big players is by intermediately hiring the services of the network
operator. In the future Internet, as shown in Figure 1.2b, end users will deal
directly with big players and the access to services will be independent of an
intermediate negotiation with a network operator. This scenario does resemble
Virtual Private Networks (VPN) connections on top of physical infrastructures.
The big players hire the access and transport infrastructure from network op-
erators. This way the big players can create end-to-end connections between
their customers and data centers. Ultimately, the big players end up creating
their own ecosystems in the Internet by besieging their respective customers;
and these Internet ecosystems can span over multiple operators domains. In
fact, this scenario we envision is already taking shape at an initial scale. Com-
panies, such as Google, are hiring huge amounts of infrastructure resources from

1.1. BACKGROUND 5

(a)

operators infrastructure

(b)

Figure 1.2: Relationship between end users, network operators and big players:
(a) current scenario and (b) future Internet scenario.

operators, such as Deutsche Telekom, to provide connectivity between end users
and data centers. Operators have been referring to these services as Internet as
a Service.

Although infrastructure is available, there are many challenges still to be
addressed so that the envisioned scenario can become reality on its full con-
ception. These range from political to ethical, financial and technological chal-
lenges. Concerning technological challenges, network and services virtualization
will be one of the underlying pillars enabling the future Internet. Resources of
a single physical network will be shared among multiple coexisting virtual net-
works, which demands novel approaches for resource allocation. Link capacity is
one of the main resources that must be fairly shared and allocated, and this can
be achieved with sophisticated approaches for link dimensioning. Notice that all
involved parts can benefit from efficient link dimensioning approaches: (i) these
approaches can support proper use of operator’s bandwidth resources; (ii) these
approaches can help ensuring that traffic from/to a big player meets the Quality
of Service (QoS) levels agreed with network operators; and (iii) as a consequence
of a properly dimensioned network, end users can ultimately experience good
levels of Quality of Experience (QoE).

In this thesis we address the link dimensioning problem. We propose ap-
proaches for link dimensioning that can accurately estimate required capacity
of traffic by using traffic measurement technologies widely found at network op-

6 Introduction

erators. In the next section we provide an overview of current approaches used
for link provisioning and dimensioning, pointing our their pros and cons.

1.2 Link Dimensioning Overview

Link dimensioning is used by network operators to properly provision their net-
work links according to the traffic demands. If traffic demands are higher than
the allocated capacity, end users might experience network performance degra-
dation due to packets loss caused by, e.g., buffer overflow in network routers.
Aiming at meeting desired QoS levels and, hence, avoiding violation of Service-
Level Agreement (SLA), operators continuously monitor the bandwidth utiliza-
tion of their links. Network operators commonly use well-stablished and widely
deployed traffic monitoring and measurement tools. A typical approach com-
bines the Simple Network Management Protocol (SNMP) [101] with the Multi
Router Traffic Grapher (MRTG) [4] or Round-Robin Database Tool (RRD) [6].
The latter are used for storage and visualization purposes. SNMP allows
for operators to access interface counters defined by Management Information
Bases (MIB) and obtain information, such as the number of received and sent
bytes by the interface since the device was last rebooted.

Cisco has published in [26] a how-to guideline for calculating bandwidth
utilization using SNMP. The procedure is quite straightforward and relies on
two counters defined by MIB-II [82], namely, ifInOctets and ifOutOctets

2.
These counters provide, respectively, the number of received and sent octets for a
given network interface. According to Cisco’s document, bandwidth utilization
can be calculated by

∆ifInOctets

T
+

∆ifOutOctets

T
,

where T must be greater than zero and defines the size of the time interval
between two consecutive readings of the octet counters, and ∆ represents the
modulus of the difference between the values of the counters read at times t0
and t0 + T .

Bandwidth utilization is typically calculated by polling interface counters
every 5 to 15 minutes. Aiming at over-provisioning, the required link capacity
is defined by adding a safety margin to the average bandwidth utilization. This
safety margin might depend on several factors, such as period of the day and
QoS requirements. Typically, operators define this safety margin as a simple
percentage of the average bandwidth utilization [31]. This simplistic approach

2Since ifInOctets and ifOutOctets are 32-bit counters, which wraparound frequently, it

would be better to use the equivalent 64-bit counters ifHCInOctets and ifHCOutOctets.

1.2. LINK DIMENSIONING OVERVIEW 7

for defining the safety margin is often referred to as rule of thumb for over-
provisioning. Given the wide availability of the SNMP protocol, rules of thumb
approaches are easy-to-use.

One of the main problems with the rules of thumb approach is that traffic
fluctuations are averaged within too large time bins. That is, the way to calcu-
late bandwidth utilization might overlook traffic bursts that happen at smaller
timescales, such as seconds or fraction of seconds. The overlooked bursts ulti-
mately create problems for network performance and degrade user experience.
This problem of averaging traffic in large time bins is shown in Figure 1.3. This
figure shows the throughput time series of a 15-minute traffic trace generated
using various values for T (bin size). It becomes clear how traffic fluctuations
completely disappear when larger timescales are used. While the highest 5-
minute peak observed in Figure 1.3a is 1.46 Gb/s, when setting T = 10s we
can observe traffic rates up to 1.52 Gb/s. When measuring the traffic at the
milliseconds timescale, T = 100ms, we observe rates reaching up to 1.68 Gb/s.

 1.3

 1.4

 1.5

 1.6

 1.7

0 100 200 300 400 500 600 700 800 900

th
ro

u
g
h
p
u
t
(G

b
/s

)

time (s)

(a) T = 5min

 1.3

 1.4

 1.5

 1.6

 1.7

0 100 200 300 400 500 600 700 800 900

th
ro

u
g
h
p
u
t
(G

b
/s

)

time (s)

(b) T = 10s

 1.3

 1.4

 1.5

 1.6

 1.7

0 100 200 300 400 500 600 700 800 900

th
ro

u
g
h
p
u
t
(G

b
/s

)

time (s)

(c) T = 1s

 1.3

 1.4

 1.5

 1.6

 1.7

0 100 200 300 400 500 600 700 800 900

th
ro

u
g
h
p
u
t
(G

b
/s

)

time (s)

(d) T = 100ms

Figure 1.3: Time series for a 15-minute long traffic capture at various timescales.

8 Introduction

SNMP-based rules of thumb do not scale according to small timescales. For
example, if the network operator is interested in provisioning the link at shorter
timescales, it is not feasible to read SNMP counters every 100 ms. To account
for that, operators tend to use rules of thumb with large safety margins that will
likely overestimate the required link capacity at the timescale in question, hence,
wasting link resources that could be allocated to other purposes. However, if
even a large safety margin does not suffice, the link will be under-provisioned
and, ultimately, performance degradations might be experienced by end users.

Many alternative approaches for link dimensioning have been proposed with
the aim of being more intelligent and reliable than SNMP-based rules of thumb
for over-provisioning. However, the higher accuracy of these approaches often
comes at the cost of requiring more efforts on network traffic measurements.
For example, the work in [109] defines a link dimensioning formula that requires
traffic statistics (e.g., traffic variance) usually calculated from packet-level mea-
surements. That is, on having continuous packet capturing, one can have a
complete overview of the transferred traffic and, therefore, calculate required
link capacity with higher precision even at very short timescales. Theoretically,
for such approaches, the limit on how small the timescale can be is actually
dictated by the hardware/software that is used to capture packets.

Nonetheless, even providing estimations of required capacity with high ac-
curacy, approaches that require continuous packet capturing are not attractive
and typically not adopted by network operators. That is because traffic rates
in high-speed links, and the ever increasing volume of traffic, make packet cap-
turing operationally and financially unfeasible. Some works such as [70, 97]
have addressed the challenge of packet capturing in high-speed links, e.g., 10
to 100 Gb/s, by proposing the use of hardware acceleration techniques. These
solutions demand very specific and mostly expensive hardware and software.
Therefore, network operators stick to easy-to-use, though not reliable, SNMP-
based rules of thumb.

In this thesis we aim at finding a tradeoff between ease of use and accu-
racy for link dimensioning. We make use of the accurate and already validated
dimensioning formula proposed in [109]. However, instead of relying on costly
packet captures, our approaches provide ways to compute the input parame-
ters for the dimensioning formula from traffic measurement technologies that
can be easily found at operators’ networks, namely sFlow, NetFlow/IPFIX and
OpenFlow.

Literature Review

This section provides a brief literature review on the problem of link dimen-
sioning. Our decision to keep the literature review short is based on the fact

1.2. LINK DIMENSIONING OVERVIEW 9

that very few novel steps were taken in this area since the work of [109]. For a
more detailed literature review, therefore, one can refer to [109]. Also, in this
section we focus mostly on measurement-oriented link dimensioning (opposed
to model-based approaches), which is within the context of the research in this
thesis.

Some of the proposed approaches for link dimensioning only address specific
applications or metrics, and most of the applications require traffic measure-
ments at the packet level, i.e., continuous packet capturing. For example, the
work in [96, 109, 112], which is further detailed in Section 1.4, proposes a dimen-
sioning formula focusing on link rate exceedance that requires traffic statistics
to be computed from packet measurements. In [80] the authors propose to
estimate the same statistics from routers buffer occupancy. Although this sec-
ond approach does not need on-link traffic measurements, it requires additional
complexity to be implemented in the routers. The work in [112] proposes a pro-
visioning procedure requiring minimal measurement effort, using minimal model
assumptions, and with QoS constraints expressed in link rate exceedance. How-
ever, this work focuses on traffic variations that are solely due to fluctuations
at the flow level, and the proposed bandwidth provisioning method is only valid
for relatively large timescales, e.g., 1 second.

In [74] the authors propose a bandwidth estimator based on a M/G/∞
model. The main limitation of this work is, however, that it requires continuous
packet-level measurements to observe packet arrivals and sizes. In addition, the
model is further divided into four different sets of equations, and the selection
on which one to use depends on the timescale the operator wishes to dimen-
sion a given link. This characteristic limits the flexibility given that the link
dimensioning procedure needs to be adapted once the timescale is changed.

Other approaches use link dimensioning within more specific cases. For ex-
ample, in [9] the authors proposed a bandwidth allocation procedure for delay
sensitive applications along a path of point-to-point Multiprotocol Label Switch-
ing (MPLS) connections. Focusing on improving QoS, the approach in [49]
accounts for packet delays for dimensioning links. But once again, the require-
ment of packet-level measurements comes to be the main drawback of these
approaches.

Not only packet-based approaches have been proposed. Concerning flow-
level traffic measurements, the authors in [10] propose a traffic model on Poisson
flow arrivals and i.i.d. flow rates that is able to predict bandwidth consumption
for non-congested backbone links, making assumptions on the evolution of traffic
within single flows. The authors in [12] provide dimensioning formulas for IP
access networks where QoS is measured by per-flow throughput. In such work,
only elastic data traffic (i.e., TCP connections) was considered.

10 Introduction

As further detailed in the next section, in this thesis we propose link dimen-
sioning approaches focusing on ease of use and accuracy. Our approaches do
not put any constraint on the type of the traffic when calculating the required
capacity of a given traffic aggregate.

1.3 Thesis Contribution

Figure 1.4 positions this thesis in relation to the currently used rules of thumb
and the approach proposed in [109], from which we use the dimensioning formula
as starting point of our research (the formula is further detailed in Section 1.4).
This formula originally requires continuous packet capturing. In this thesis we
investigate and develop alternative link dimensioning approaches with compara-
ble accuracy as the work presented in [109], but also with comparable ease-of-use
as the SNMP-based rules of thumb.

E
a
s
e
-
o
f-
u
s
e

Accuracy

SNMP-based

rules of thumb

Packet-based

from [109]

This thesis

Figure 1.4: Position of this thesis.

From the easiness-of-use point of view, we avoid the use of continuous packet
capturing and propose methods for calculating traffic statistics, required by the
adopted dimensioning formula, from alternative and widely available traffic mea-
surement technologies. The idea is to use measurement technologies that can
easily be found at operators devices and, perhaps, are already used for other
purposes than link dimensioning (e.g., as presented in [105]). Measurement tech-
nologies we study in this thesis are sFlow and packet sampling, NetFlow/IPFIX
flow-level measurements and the more recent OpenFlow. Although easier to
use, these technologies provide coarser measurements than plain packet captur-
ing and, consequently, accuracy of estimations of required capacity might be

1.4. LINK DIMENSIONING FORMULA 11

imperiled. This problem is further addressed and discussed while validating the
proposed methods in their respective chapters. Giving that this thesis takes
the dimensioning formula from [109] as starting point, in the next section we
present this formula in detail.

1.4 Link Dimensioning Formula

The link dimensioning formula used in this thesis was proposed in [109], and
extensively validated in [80, 96, 112]. This formula aims at “link transparency”,
which means that end users should almost never perceive network performance
degradations due to lack of bandwidth resources. To statistically assure link
transparency to users, the provided link capacity C should satisfy

P{A(T) ≥ CT} ≤ ε , (1.1)

where A(T) denotes the total amount of traffic arriving in intervals of length T ,
and ε indicates the probability that the traffic rate A(T)/T is exceeding C at
the timescale T .

The link dimensioning formula requires that traffic aggregates at timescale
T are Gaussian (i.e., A(T) are normally distributed) and stationary. The link
capacity C(T, ε), needed to satisfy Eq. (1.1), can be calculated by

C(T, ε) = ρ+
1

T

�
−2 log (ε) · υ(T) , (1.2)

where the mean traffic rate ρ is added with a term that can be seen as a “safety
margin”. This term depends on the traffic variance υ(T) at the chosen timescale.
Mean traffic rate ρ and traffic variance υ(T) are defined by, respectively

ρ =
1

nT

n�

i=1

Ai(T) and υ(T) =
1

n− 1

n�

n=1

(Ai(T)− ρT)2 ,

where Ai(T) is the amount (in bytes) of observed traffic in time interval i of
length T and n the number of monitored intervals.

By including the traffic variance, the formula also accounts for traffic bursts
that would potentially threaten link transparency requirements. Notice that
this formula is very flexible: network operators can choose the timescale T and
the exceedance probability ε according to the QoS that they want to provide to
their customers. For example, while larger T (i.e., around 1s) would be enough
to provide good quality of experience to users on web browsing, shorter T (i.e.,
milliseconds scale) should be chosen when real time applications, such as Voice
over IP (VoIP), are predominant in the network, since the formula would be

12 Introduction

 1.4

 1.42

 1.44

 1.46

 1.48

 1.5

 1.52

 1.54

 0 100 200 300 400 500 600 700 800 900

th
ro

u
g

h
p

u
t

(G
b

/s
)

time (s)

C(T,ε)

exceedance

T
υ(T)

Figure 1.5: Visual explanation of the parameters of the link dimensioning for-
mula of Equation (1.2); traffic time series created with T = 30s.

able to capture traffic bursts that happen at such short time scales. The value
for ε should be chosen in accordance to the desired QoS. Roughly spoken, while
T defines to which extent the duration of traffic fluctuations are important, ε
accounts for how many intervals of size T the traffic aggregate A(T) is allowed
to be higher than the required bandwidth C(T, ε). Notice that the choice of T
is also related to the size of router buffers to accommodate traffic that exceeds
link capacity.

To help the understanding of how the link dimensioning formula of Equa-
tion (1.2) works, Figure 1.5 provides a visual explanation of the formula’s pa-
rameters. In this example, we use a 15-minute long traffic time series created
with T = 30s. That is, the traffic is aggregated in time bins of size 30s, as
illustrated in green arrows between 240s and 390s. The variance υ(T) comes
from the difference between the traffic aggregates of each bin, as illustrated by
the dark blue arrows between 660s and 870s. As mentioned before, the network
operator must choose an appropriate value of ε according to the QoS to be pro-
vided. All these parameters, and the traffic average rate ρ, are applied to the
Equation (1.2) and the C(T, ε) is obtained. To determine whether the estima-
tion is successful or not, one needs to inspect how many of the traffic bins have
traffic rate that exceeds the estimated C(T, ε). In the example of Figure 1.5
there is only one bin with rate higher than the estimated required capacity.

Figure 1.6 shows a practical example of the use of this dimensioning formula.
The figure shows the time series of traffic throughput calculated from 15 minutes
of continuous packet capturing. In this example, the size of time bins is set to
T = 1s, i.e., the time series shows the average traffic rate for every second during
15 minutes. In the dimensioning formula we set ε = 1%. The example trace has
ρ = 1.45 Gb/s and υ(T) = 1.21 Gb. For a 15-minute trace, we have 900 time

1.4. LINK DIMENSIONING FORMULA 13

 1.32

 1.36

 1.4

 1.44

 1.48

 1.52

 1.56

 1.6

0 100 200 300 400 500 600 700 800 900

th
ro

u
g

h
p

u
t

(G
b

/s
)

time (s)

C(T,ε), with ε=1%

C(T,ε), with ε=10%

Figure 1.6: Estimated C(T, ε) using the link dimensioning formula of Equa-
tion (1.2) for a sample 15-minute traffic trace; T = 1s and ε = 1% or ε = 10%.

bins of size T = 1s. By setting ε = 1%, we allow for up to 9 time bins to have a
throughput higher than C(T, ε). That is, the resulting estimation is successful
if no more than 1% of time bins have throughput higher than C(T, ε). In this
example the formula estimated C(T, ε) = 1.56 Gb/s, which resulted in only 3
time bins with throughput exceeding this estimation. This also shows that the
estimated C(T, ε) is higher than the actual required capacity – which would
yield an estimation such that exactly 9 time bins will have throughput higher
than the estimated C(T, ε). Nonetheless, we assume that in this example the
overestimation is not excessively high. That is because excessive overestimation
might result in cases that the throughput of no time bin is higher than the
estimated C(T, ε) for ε > 0.

For matters of illustration, in Figure 1.6 we also show the required capacity
C(T, ε) computed with ε = 10%. In this case, by setting a larger exceedance
probability ε, the estimated required capacity is lower than the previous one.
Clearly, this happens because with a larger ε we accept that in more bins the
traffic rate exceeds the estimated capacity. In this case, we allow for a total
of 90 time bins to have rates higher than C(T, ε), but actually only 13 bins
exceed the estimated capacity of 1.53 Gb/s, which again gives us a successful
estimation. Finally, for matters of comparison, simulating SNMP-based rules of
thumb [31], by adding add 50% of the average throughput to itself (ρ · 1.5), the
estimated required capacity becomes 2.18 Gb/s, which overly overestimates the
required capacity for this example trace.

If the network operator performs continuous packet capture, the calculated
ρ and υ(T) will faithfully represent the real traffic statistics. However, these
statistics may not be straightforwardly calculated from other measurement tech-
nologies, such as sampled packets or flow-level traffic measurements.

14 Introduction

1.5 Goal, Research Questions & Approaches

1.5.1 Goal

As described in Section 1.1, link dimensioning is an important task performed by
network operators to properly provision their network links. However, optimal
allocation of resources in the excessively virtualized networks, as envisioned in
the scenarios of future Internet, will call for more accurate approaches for link di-
mensioning than those currently used by network operators. Given that (i) net-
work operators still stick to rough estimations obtained using old-fashioned rules
of thumb, and (ii) more accurate approaches for link dimensioning often demand
traffic measurements at the packet level, we define the overall goal of this thesis
as the following:

Research Goal: Develop easy-to-use and accurate approaches to esti-

mate required link capacity for purposes of link dimensioning.

Unlike most related work on link dimensioning, this thesis does not propose
new link dimensioning formulas. Instead, we adopt the dimensioning formula
from [109], described in Section 1.4, and focus our efforts on investigating ways
to calculate the parameters required by such formula (i.e., mean traffic rate
and traffic variance) from other types of measurements than continuous packet
capturing. Addressing the property of being easy-to-use, we only consider mea-
surement technologies largely found in network devices and that scale to high
traffic rates observed nowadays. Next, we describe the research questions de-
fined to achieve our overall goal.

1.5.2 Research Questions and their approaches

As mentioned in Section 1.4, the adopted link dimensioning formula from Equa-
tion (1.2) requires that traffic rates aggregated at a certain timescale follow a
Gaussian process. Internet traffic has been evolving due to the recent advent of
many online services, such as Facebook, Dropbox, Youtube and NetFlix. Such
services transformed users behavior what, consequently, potentially reshaped
network traffic. In the past, two main works have addressed the Gaussianity
fit of traffic, for example [71] in 2002 and [110] in 2006. However, these works
relied on data measured relatively long ago and it is important to assess the
Gaussianity fit of traffic once again. Therefore, our first research question is
defined as:

RQ-1: Given the importance of Gaussian characteristics for link dimen-

sioning purposes, and the emergence of new online services, is current

Internet traffic still Gaussian?

1.5. GOAL, RESEARCH QUESTIONS & APPROACHES 15

We address the Research Question 1 in Chapter 2 by assessing whether
the Gaussianity assumption of traffic still holds for current traffic. We do so
by assessing the Gaussianity fit of an entire traffic dataset, comprising traffic
measurement from around the globe. This dataset is later used in other chapters
to validate our proposed link dimensioning procedures. In addition, we further
study properties of (non-)Gaussian traffic aiming at finding what causes the
lack of Gaussianity in certain traffic aggregates. This would allow operators
to better judge whether their traffic is Gaussian or not, solely based on the
mix of applications and hosts behavior, without the need for performing traffic
measurements.

Concerning ease of use of the proposed link dimensioning approaches in
this thesis, all the remaining research questions relate to investigating how to
use widely available traffic measurement technologies for link dimensioning pur-
poses. The main drawback of the proposed approach in [109] is that it requires
continuous packet captures and this is not trivial to do on current high-speed
links due to operational and financial constraints. The most straightforward
solution to measure high amounts of traffic in an easier way is by reducing the
measurement workload, which can be done by deploying packet sampling tech-
nologies. sFlow certainly is among the most deployed traffic monitoring and
measurement technologies that implement packet sampling, and many network
devices are sFlow-enabled3. For example, it is known that AMS-IX [65] and
CERN [59] use sFlow to measure the traffic from their network, and such infor-
mation can later be used to support network management operations. However,
sampled packets only give us a partial overview of the actual observed traffic.
Therefore, we must find ways to estimate traffic statistics that are needed by the
link dimensioning formula (i.e., average traffic rate and traffic variance) from
sampled data. Given that, our second research question is defined as:

RQ-2: Given its potential for scalability at high-speed links, traffic mea-

surement technologies that implement packet sampling are very attractive.

The problem is that sampled data provides a partial view of the traffic

transferred over the link. Therefore, how can we estimate traffic aver-

age rate and traffic variance, crucial inputs for the adopted dimensioning

formula, from sampled packets?

Research Question 2 is addressed in Chapter 3 where we investigate the im-
pact of packet sampling on link dimensioning. In addition to the sampling algo-
rithm implemented by sFlow, we study two other sampling algorithms, namely
Bernoulli and n-in-N sampling. Although the estimation of the traffic average
rate from sampled data is quite straightforward, to estimate the traffic variance

3http://www.sflow.org/products/index.php

16 Introduction

might not be. We show that simply scaling up the variance calculated from
sampled data might not yield the expected results, ultimately, impacting nega-
tively on the results of the link dimensioning procedure. Therefore, we propose
different formulas to estimate the traffic variance from sampled packets. Fur-
thermore, we also show the impact of the exporting process of sampled packets,
as implemented by sFlow, on the link dimensioning procedure.

Another very attractive traffic measurement technology is the flow-based
one. This is mainly due to the wide deployment of, among others, the Cisco’s
NetFlow and IPFIX-based probes. Nowadays, many network devices are flow-
enabled, which makes flows a commonly found measurement technology. Besides
being largely available at operators networks, flows are a scalable measurement
technology, providing aggregated view of measured traffic. However, its scalabil-
ity advantage comes at the cost of lack of more granular information about the
observed traffic. For example, from flows one can determine the duration and
number of packets and bytes transferred between two hosts, but cannot infer
the individual packet transmission times or sizes. Without the information on
individual packets, the calculation of traffic variance becomes a real challenge.
Therefore, our third research question is defined as:

RQ-3: Given the widespread availability of flow-enabled network devices,

flow measurements are a very attractive technology with the additional

advantage of being scalable for monitoring large amounts of traffic data.

However, the summarized data provided by flows impose challenges on its

use for link dimensioning purposes. Therefore, how can we estimate traffic

average rate and variance without information on individual packets?

The Research Question 3 is addressed in Chapter 4 and 5. A straightfor-
ward approach is described in Chapter 4, which builds traffic time series from
flows and uses these time series to estimate traffic variance for later use in
the dimensioning formula. This approach relies on the basic assumption that
packets within flows are uniformly distributed and of the same size. Clearly,
such assumptions hardly represent reality. Despite that, this simple approach
is able to provide satisfactory results on estimating the required capacity at
larger timescales. Relying solely on flows and based on optimistic assumptions
about traffic, this approach is limited to estimate required link capacity at large
timescales only. Therefore, in Chapter 5 we describe a procedure based on flow
traffic models that is able to provide accurate estimations of required capacity at
much smaller timescales, such as 1ms. The gain on accuracy comes at the cost
of requiring parameters tuning, which makes this second flow-based procedure
less easy-to-use than the first one.

We validate the proposed link dimensioning procedures from Chapters 3, 4
and 5 against an empirically defined ground-truth. That is possible because

1.6. THESIS ORGANIZATION 17

our dataset consists solely of packet-level measurements, which enables us to
empirically find the required capacity for the measured traffic given the values
of T and ε of interest.

Finally, together with the advent of the Software-Defined Networking (SDN)
paradigm, the protocol OpenFlow has recently gained lots of attention from
both industry and academia, and it is getting adopted by network operators.
OpenFlow is not primarily intended for traffic measurements, but it allows the
decoupling of the control and data planes in a network. Similarly to NetFlow,
OpenFlow is able to measure traffic on a per-flow basis, keeping counters
with predefined information, such as number of packets and bytes. Therefore,
OpenFlow can, in theory, provide traffic measurements for link dimensioning,
which leads us to the fourth research question, defined as:

RQ-4: The increasing interest in SDN has made the recent OpenFlow

largely implemented in many network devices. In theory, OpenFlow

can measure traffic in a NetFlow/IPFIX style. Therefore, can we use

OpenFlow per-flow traffic measurements for link dimensioning purposes?

We address the Research Question 4 in Chapter 6. We introduce an approach
to retrieve traffic measurements from the switch solely using messages defined
by the OpenFlow protocol. These measurements consist of per-flow packet and
byte counters maintained by the OpenFlow switch. OpenFlow is already largely
available in network devices from different vendors. In Chapter 6 we assess the
quality of the per-flow traffic measurements obtained from OpenFlow implemen-
tations in (i) a physical setup using a real OpenFlow switch, and (ii) a virtual
setup using Open vSwitch, which serves as basis for many vendor OpenFlow im-
plementations. We demonstrate that the tested implementations of OpenFlow
do not provide traffic measurements of enough quality for link dimensioning. In
fact, we show that the measurements lack accuracy even when measuring traffic
aggregates from a single IP flow.

By answering the Research Questions 2, 3 and 4, we obtain several ways
of estimating the required capacity for link dimensioning purposes, all using
traffic measurement technologies that are widely found at operators’ networks,
combined with an extensively validated link dimensioning formula. Therefore,
the results of this thesis provide operators with the opportunity to choose the
most appropriate procedure so that their requirements are fulfilled.

1.6 Thesis Organization

Given the main goal, research questions and the approaches to answer these
questions, in the following we provide a short summary of each chapter in the

18 Introduction

remainder of this thesis. In addition, we link the publications used as the basis
for each chapter. Figure 1.7 illustrates the position of chapters, serving also as
a guideline throughout this thesis.

Chapter 2:

Measurements

Chapter 3:

sFlow

Chapter 4&5:

NetFlow/IPFIX

Chapter 6:

OpenFlow

Chapter 7:

Conclusions

Figure 1.7: Thesis’s organization.

Chapter 2: Datasets and Traffic Characteristics

In this chapter we introduce the traffic measurements dataset that comprises
hundreds of packet-level traffic traces used throughout this thesis to validate our
proposed link dimensioning approaches. Given the importance of Gaussianity
fit of traffic in the link dimensioning approach of [109], which is the basis of our
work, we present an extensive study on Gaussian characteristics of the traffic for
the whole dataset. Among our findings in this chapter, we show the relationship
between of Gaussianity fit and horizontal traffic aggregation (i.e., defined by the
size of the measurement interval). We demonstrate that it is safer to relate the
degree of Gaussianity to the traffic average rate than to the number of active
hosts. In addition, we also identify the relationship between network usage
patterns and traffic Gaussianity fit. We verify the impact of abnormal traffic
bursts on Gaussianity and further investigate applications and users behind
these bursts. The Gaussianity study presented in Chapter 2 has been published
on the following two publications:

• R. de O. Schmidt, R. Sadre and A. Pras, Gaussian Traffic Revisited. In
Proceedings of the 12th IFIP Networking Conference, 2013 [41]

• R. de O. Schmidt, R. Sadre, N. Melnikov, J. Schönwälder and A. Pras,
Linking Network Usage Patterns to Traffic Gaussianity Fit. In Proceed-
ings of the 13th IFIP Networking Conference, 2014 [40]

1.6. THESIS ORGANIZATION 19

Chapter 3: sFlow-based Link Dimensioning

Since the main drawback of the link dimensioning approach in [109] is the fact
that it requires continuous packet captures, in this chapter we explore what we
believe to be the first idea to come in mind in order to reduce the traffic measure-
ment overhead for link dimensioning purposes: the deployment of packet sam-
pling technologies. In particular we study three sampling algorithms: Bernoulli,
n-in-N and the specific strategy implemented by sFlow. Besides being widely
implemented within traffic measurement tools, Bernoulli and n-in-N are also
described in [119]. We further study the impact of the exporting process imple-
mented by the measurement tool sFlow on link dimensioning. We show that it
is feasible to use packet sampling strategies to reduce measurement efforts and
still have accurate estimations of required capacity. The content in this chapter
is partially based on the following publication:

• R. de O. Schmidt, R. Sadre, A. Sperotto and A. Pras, Lightweight Link Di-
mensioning using sFlow Sampling. In Proceedings of the 9th International
Conference on Network and Services Management (CNSM), 2013 [42]

• R. de O. Schmidt, R. Sadre, A. Sperotto and A. Pras, Impact of Packet
Sampling on Link Dimensioning. Under review (TNSM).

Chapter 4: Pure Flow-based Link Dimensioning

Due to its wide presence in network devices, NetFlow measurements, or similar,
have become an attractive source of information about the traffic. Although
being a scalable solution for measuring traffic on high-speed links, the problem
is that flow-level measurements only provide an overview of the actual traffic.
In this chapter we describe an approach to create traffic time series out of flows,
estimate traffic statistics needed by the dimensioning formula and, ultimately,
estimate the required capacity. We show that this relatively simple approach is
able to provide satisfactory results at larger timescales. This chapter extends
the initial validation of the proposed flow-based approach as published in:

• R. de O. Schmidt, A. Sperotto, R. Sadre and A. Pras, Towards Bandwidth
Estimation using Flow-level Measurements. In Proceedings of the 6th
International Conference on Autonomous Infrastructure, Management and
Security (AIMS), 2012 [45]

Chapter 5: Hybrid Flow-based Link Dimensioning

Motivated by the fact that the approach from Chapter 4 works for large
timescales only, in this chapter we propose a more sophisticated approach to

20 Introduction

estimate the required traffic statistics from flow measurements. The idea is to
assume a parametrized model for packet arrivals within flows, and to use short-
term packet captures for parameters tuning. Extensive numerical investigations
show that this approach is able to accurately provide estimations of required
capacity at very small timescales, such as 1ms. The content of this chapter has
been published in:

• R. de O. Schmidt, R. Sadre, A. Sperotto, H. van den Berg and A. Pras, A
Hybrid Procedure for Efficient Link Dimensioning. Computer Networks,
67, 252–269, 2014 [44]

Chapter 6: OpenFlow-based Link Dimensioning

Motivated by the increasing popularity and wide adoption of SDN-based tech-
nologies, in this chapter we propose an OpenFlow-based approach for link di-
mensioning. This approach uses messages defined by the OpenFlow proto-
col to retrieve traffic measurement data from the OpenFlow switch. Given
that OpenFlow is able to, in theory, provide us with per-flow information
(NetFlow/IPFIX style), the measured data from OpenFlow can be used as input
to one of the flow-based approaches proposed in Chapter 4 and 5. The inaccu-
racy of measured data with current implementations of OpenFlow precluded the
validation of the proposed OpenFlow-based approach. Nonetheless, we present a
study on the quality of measured data obtained from a real OpenFlow switch and
a virtual one using a widely adopted open source implementation of OpenFlow.
The content of this chapter is partially based on the following publication:

• R. de O. Schmidt, L. Hendriks, A. Pras and R. van der Pol, OpenFlow-
based Link Dimensioning. Demo at Innovating the Network for Data-
Intensive Science Workshop (INDIS), ACM/IEEE International Confer-
ence for High Performance Computing, Networking, Storage and Analysis
(SC), 2014 [37]

Chapter 7: Conclusions

In this section we summarize our main findings and contributions. We compare
and discuss each of the proposed approaches in this thesis according to their
respective ease-of-use and accuracy. We also indicate directions for potential
future work.

1.6. THESIS ORGANIZATION 21

The last thing the men behind the curtain wants is a conscious informed

public capable of critical thinking. Which is why a continually fraudulent zeitgeist

is output via religion, the mass media, and the educational system. They seek

to keep you in a distracted, naive bubble. And they are doing a damn good job of it.

— Zeitgeist, 2007

CHAPTER 2

Datasets and Traffic Characteristics

Traffic monitoring and measurements provide indispensable information

for network operators to perform management actions in their networks.

The goal of this chapter is to describe and characterize the traffic mea-

surements used throughout the rest of this thesis for validating proposed

link dimensioning approaches. Our dataset consists of hundreds of pcap

files with packet captures, which are made publicly available on Sim-

pleWeb [104]. In this chapter we also present a comprehensive study on

the (non-)Gaussianity property of traffic traces in our dataset, motivated

by the requirement of Gaussian traffic from Equation (1.2). Papers related

to this chapter are [40, 41].

Chapter 2:

Measurements

Chapter 3:

sFlow

Chapter 4&5:

NetFlow/IPFIX

Chapter 6:

OpenFlow

Chapter 7:

Conclusions

The organization of this chapter is as follows:

• Section 2.1 provides a brief overview on traffic monitoring and mea-
surements.

• Section 2.2 describes how the packet measurements from our dataset
are used throughout the thesis.

• Section 2.3 presents our measurements dataset.

• Section 2.4 thoroughly investigates sets out a thorough study on the
Gaussianity fit of traffic of our dataset.

• Section 2.5 looks into the causes for bad fit of Gaussianity.

• Section 2.6 concludes this chapter.

24 Datasets and Traffic Characteristics

2.1 Measurements & Monitoring Overview

To begin with, it is important to clearly understand the difference between two
terms often misused: network traffic measurements and network monitoring.
From Wikipedia we learn that network traffic measurements1 “is the process of
measuring the amount and type of traffic on a particular network,” accounting
for what is seen. Also from Wikipedia, network monitoring2 “is the use of a
system that constantly monitors a network, notifying the administrator in case
of outages.”

Network traffic measurements can be done in two ways, i.e., using active or
passive techniques (or even a combination of both). Active techniques usually
make use of tools, such as Iperf3,4. By injecting packets into the communication
channel, these tools are able to measure, for example, throughput, packet loss
and transmission delay. The downside of active measurements is, however, that
it is a more intrusive measurement technique than the passive one.

In this thesis we focus on passive measurement techniques and tools. A
widely used tool for passively measuring network traffic is the SNMP proto-
col [101]. SNMP use counters to provide a variety of basic statistics about the
observed traffic. Alternatively, one can capture the observed packets and have
more granular measurement data. There are many tools that allow for packet
capturing, such as tcpdump5 and pf_ring [88]. Aiming at scalability, one can
use packet sampling tools, such as sFlow [62], to reduce the amount of captured
packets.

Another way to passively measure traffic is by flow-level measurements.
Among tools that measure flows, the most commonly found is Cisco’s
NetFlow [28]. Other vendors also implemented their own versions of NetFlow,
for example, J-Flow from Juniper Networks [69]. In addition, there are many
open source tools that perform flow-level measurements, such as YAF [61, 19]
and Argus [98]. The recently proposed OpenFlow [83] protocol is also able to
measure observed traffic on a flow basis, and the reported measured data by
OpenFlow can assume a NetFlow-like form. The tools sFlow, NetFlow/IPFIX
and OpenFlow will be discussed in more details in the next chapters.

1http://en.wikipedia.org/wiki/Network_traffic_measurement. Accessed on Jun. 2014.
2http://en.wikipedia.org/wiki/Network_monitoring. Accessed on Jun. 2014.
3http://iperf.sourceforge.net/. Accessed on Jun. 2014.
4https://code.google.com/p/iperf/. Accessed on Jun. 2014.
5http://www.tcpdump.org/. Accessed on Jun. 2014.

2.2. CONVERTING PACKET CAPTURES 25

2.2 Converting Packet Captures

In this section we shortly describe the procedure we use to validate each of the
link dimensioning approaches proposed in the following chapters. Our measure-
ments dataset entirely consists of packet-level traffic captures (i.e., pcap). By
having the packet captures, we are able to validate the proposed dimensioning
procedures against empirically defined ground-truth. We use of tools to convert
this packet captures into measurements we want to use in our link dimension-
ing approaches. Figure 2.1 illustrates how we make use of our measurements
dataset throughout this thesis.

traffic measurements

packet captures

convert measurements

sFlow NetFlow OpenFlow

link dimensioning

empirical

ground-truth

sFlow-based

approach Ch. 3

NetFlow-based

approach Ch. 4 & 5

OpenFlow-based

approach Ch. 6

Figure 2.1: From traffic measurements to link dimensioning.

As one can see in Figure 2.1 we convert packet-level measurements to the
ones used in the proposed approaches in this thesis. For each conversion we
use a different tool. To convert from packets to sFlow sampled data, used
by the approach of Chapter 3, we use our own implementation that emulates
sFlow. Our implementation follows the sFlow definitions [95] as implemented by
InMon’s sFlow [62] and other sFlow tools such as pmacct [76]. The conversion
from packets to NetFlow-like flows, used in Chapters 4 and 5, is done by the tool
YAF [19]. Finally, in Chapter 6 we use real implementations of Open vSwitch6

to collect traffic measurements produced by OpenFlow.

6http://openvswitch.org/. Accessed on Jun. 2014.

26 Datasets and Traffic Characteristics

As above mentioned, the fact that packet-level measurements allow us to
compute an empirically defined ground-truth and validate the results obtained
from each of our proposed link dimensioning approaches. However, in real de-
ployments the intermediate step to convert measurements should not be present.
That is, the implemented link dimensioning approaches should receive as input
measurements coming directly from the appropriate measurement tool.

2.3 Description of Measurements Datasets

In this section we describe the measurement dataset used to assess the Gaus-
sianity of network traffic. The entire dataset comprises 768 15-minute traces,
totaling 192 hours of captures. The trace duration of 15 minutes has been chosen
in accordance with [110]. Longer time periods are generally not stationary due
to the diurnal pattern. These traces come from different locations around the
globe and account for a total of more than 18.5 billion packets. Traffic captures
were done at the IP packet level, using tools such as tcpdump. Table 2.1 gives a
summary of the data obtained from the six measurement locations. Note that
the column “length” gives the total duration of the, not necessarily consecutive,
15-minute traces, i.e., a length of 1h corresponds to four traces. It is important
to mention that no meaningful packet losses were observed for measurements
directly performed by us (i.e., locations A, B and C).

2.3.1 Measurement Locations

In this section we give a short description of the locations and time in which
our measurements took place. Our dataset comprises traffic captures from six
different locations. Three of them, namely A, B and C, are private university
networks. While A consists of traffic from a link connecting a single educa-
tion/research building in a university campus, locations B and C consist of
traffic captures in the gateway of universities. Locations D, E and F consist of
traffic from public backbone links. More details on each location is given next.

Location A

Location A is an aggregated link (2 × 1 Gb/s) connecting a university build-
ing in the Netherlands to the university’s core router (university’s gateway).
Considering incoming and outgoing traffic, this link aggregates traffic from ap-
proximately 6500 hosts and has an average use of 15%. Most traffic in this
link is actually internal to the university, i.e., from that building to other parts
of the campus. Due to the small number of hosts, single activities, such as an
overnight automatic backup, can drastically change the shape of the traffic. The

2.3. DESCRIPTION OF MEASUREMENTS DATASETS 27

Table 2.1: Summary of measurements

abbr. description year length # of hosts link capacity avg. use

A

link from

university’s building

to core router

2011 24h 6.5k 2 × 1 Gb/s 15%

B

core router of

university in the

Netherlands

2012 6h 886k 10 Gb/s 10%

C
core router of

university in Brazil
2012 18h45m 10.5k 155 and 40 Mb/s 19%

D

backbone links

connecting Chicago

and Seattle

2011 4h 1.8M 2 × 10 Gb/s 8%

E

backbone links

connecting San Jose

and Los Angeles

2011–2012 5h 3M 2 × 10 Gb/s 10%

F
trans-Pacific

backbone link
2012 13h15m 4M n/a n/a

measurement took place in a week day in September of 2011 with a duration of
24 hours. Therefore, this location comprises 96 successive 15-minute traces.

Location B

Location B is the 10 Gb/s up/down link at the core router of a university in
the Netherlands. The link comprises all the incoming and outgoing traffic of the
university. A total of approximately 886000 IP addresses were observed during
the measured period and they generated an average link use of 10% (up to 15%
in busiest hours). This is a full day measurement in which traffic was captured
during the first 15 minutes of every full hour for a period of 24 hours. Therefore,
this location comprises a total of 24 15-minute traces. The measurements of
location A and B were made in the network of the same university. However,
traffic patterns of these both are completely different. While one might say
that A ⊂ B, actually not all the traffic from A is visible in B. That’s because
the former also comprise internal traffic to the very same building, which is
not visible to the core router, i.e., measurement point of B. In addition, B
comprises traffic from the students residences in the university campus. This
might result in a “higher than usual” volume of traffic during the night.

28 Datasets and Traffic Characteristics

Location C

Location C is the core router of a university in Brazil. The aggregate of two links
of 155 Mb/s and 40 Mb/s was measured during a week of November 2012. Each
trace corresponds to the first 15 minutes of each full hour from 08:00 to 23:00
inclusive of every day during the measurement period. In this measurement it
was observed an average use of 19% with around 10.5 thousand hosts mostly
generating traffic related to web browsing, email and online services such as
social networking and video streaming. Unlike the university from location B,
the university of C does not have on-campus student residences and, therefore,
traffic volume is expected to decrease considerably in the off-peak hours.

Locations D and E

The traces for location D and E are from CAIDA’s public repository [17, 18].
Two unidirectional backbone links of 10 Gb/s each, from a Tier 1 ISP, were
measured for each location. The original traces are captures of a full hour done
on selected days. In locationD, links interconnecting Chicago and Seattle (USA)
were measured and the selected traces are from May and July 2011. In location
E, links interconnecting Los Angeles and San Jose (USA) were measured and
the selected traces are from December 2011 and January and February 2012.
Each full hour of capture gives us 4 successive 15-minute traces. It is stated at
CAIDA’s web page that for one of the links from location D’s pair, packet losses
can be expected. For traces from location F , no information on packet loss is
provided in the online repository.

Location F

Location F is a transit link of the Widely Integrated Distributed Environ-
ment (WIDE)7 to the upstream ISP. WIDE runs a major backbone of the
japanese Internet. Measurements for this location come from the public MAWI
repository [81]. The information on the link capacity as provided by MAWI
on their website is not consistent with the throughput observed in the traces.
Therefore, we cannot determine the average use of the link. These measure-
ments consist of traffic captures from November 2012 to December 2012. In
average, these traces aggregate traffic from more than 4 million hosts.

2.3.2 Traffic Characteristics

Table 2.1 presents the average link use for each location. Such value is not
expected to be constant over the measurement period. Figure 2.2a shows the

7http://www.wide.ad.jp/. Accessed on Jun. 2014.

2.4. OVERALL TRAFFIC GAUSSIANITY ASSESSMENT 29

average, minimum and maximum traffic rate per 15-minute for each location.
Locations with higher-capacity links are the ones in which traffic varies most.
In case of 24-hour measurements from A and B, differences between minimum
and maximum rates are due to traffic dissimilarities in diurnal and overnight
periods.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

A B C D E F

th
ro

u
g

h
p

u
t

(G
b
/s

)

location

(a) Average traffic rate

102

103

104

105

106

A B C D E F

n
u

m
b

e
r

o
f

p
a

ck
e

ts

location

(b) Average number of packets

Figure 2.2: Traffic characteristics of the datasets from all locations. Error bars
show minimum and maximum values for the respective statistics of each plot.

Figure 2.2b shows the average number of packets per 15-minute trace for each
location. From this figure, one can infer, for each location, the average amount
of packets after applying packet sampling techniques with different rates.

2.4 Overall Traffic Gaussianity Assessment

As mentioned in Section 1.4, one of the main requirements of the link dimension-
ing formula proposed in [109] is that traffic rates must be Gaussian distributed
at the timescale of interest. This section is, therefore, dedicated to the study of
such property in our measurements datasets.

In this section we first introduce the concept of Gaussianity and the method-
ology we use to check Gaussian fit of traffic traces, which was borrowed from
previous works [71, 110]. Then we assess the Gaussian property of all traces
from our datasets and relate their “degree of fit” to horizontal and vertical traf-
fic aggregations. The former refers to the granularity of measurements (i.e.,
timescale) and the latter refers to the amount of aggregated traffic sources (e.g.,

30 Datasets and Traffic Characteristics

number of active hosts). Last, we present a study made with additional long-
term measurements from location F (MAWI), where we assess the impact of
traffic evolution from 2006 to 2012 on its Gaussian property.

2.4.1 Definition of Gaussianity

Let T be the timescale of traffic aggregation (i.e., the same one to potentially
be used in the link dimensioning formula as well), and let L1(T), . . . , Ln(T)
be the amount of traffic observed in time periods 1, 2, . . . , n of length T . For
any T > 0, we want to know if L(T) is Gaussian distributed, i.e., whether
L(T) ∼ Norm(ρT, υ(T)), where ρ is the average traffic throughput and υ(T) is
the estimated variance of L(T) given by, respectively

ρ =
1

nT

n�

i=1

Li(T) and υ(T) =
1

n− 1

n�

i=1

(Li(T)− ρ)2 .

2.4.2 Assessing Traffic Gaussianity Fit

Quantile-quantile (Q-Q) plots can be used for a qualitative analysis of the Gaus-
sian character of measured traffic. To create a Q-Q plot, the inverse of the nor-
mal cumulative distribution function Norm(ρT, υ(T)) must be plotted against
the ordered statistics of the sampled data L(t). Therefore, the pairs for a Q-Q
plot are determined by:

�
Φ−1

�
i

n+ 1

�
,α(i)

�
, i = 1, 2, . . . , n , (2.1)

where Φ−1 is the inverse of the normal cumulative distribution function, α(i) are
the ordered traffic averages for each time bin of length T and n the size of our
sample (i.e., number of time bins of size T). Note that i

n+1
is used instead of

i
n because the 100th percentile is infinite for the normal distribution. However,
for large sample sizes (i.e., large n), the difference is not significant [78, 79].

Figure 2.3 shows Q-Q plots generated from an example trace using two
different values of T . For such plots, a traffic sample is considered “perfectly
Gaussian” when all the points fall on the diagonal line. By visually analyzing
the plots in Figure 2.3, one can conclude that, at both T , the traffic from the
example trace is “fairly Gaussian”, since only few points do deviate from the
diagonal line.

When creating Q-Q plots of Internet traffic time series, it is common to
see points at the high-end of the plot that fall distant from the diagonal line.
This is due to the well known heavy-tail characteristic of traffic. This is a very
important characteristic when the context of the study on Gaussianity is related

2.4. OVERALL TRAFFIC GAUSSIANITY ASSESSMENT 31

 140

 170

 200

 230

 260

 290

 320

 140 170 200 230 260 290 320

o
rd

e
re

d
 s

a
m

p
le

N(ρT,υ(T))

γ=0.9986

(a) T = 100ms

 180

 195

 210

 225

 240

 255

 270

 180 195 210 225 240 255 270

o
rd

e
re

d
 s

a
m

p
le

N(ρT,υ(T))

γ=0.9981

(b) T = 1s

Figure 2.3: Q-Q plots for a single example trace at different T ; this example
trace is from location D.

to management tasks such as bandwidth provisioning [96, 112] because such
points represent significant fluctuations of traffic that occur at the considered
timescale T . In the example of bandwidth provisioning, such fluctuations will
impact traffic variance, which is an important parameter for computing the
required link capacity for a given input traffic.

Q-Q plots provide a good visual analysis of the goodness of fit of the mea-
sured traffic compared to a Gaussian traffic model. However, a quantitative
analysis is also needed to support observations from such plots. There are sev-
eral procedures to quantify Gaussian goodness of fit. We opted for the linear
correlation coefficient [15]. This choice was made to conform to the methodol-
ogy followed by previous works [71, 110]. The linear correlation coefficient is
defined by:

γ(x, y) =

�n
i=1

(xi − x)(yi − y)��n
i=1

(xi − x)2
�n

i=1
(yi − y)2

, (2.2)

where the pair (x, y) is the same as in Eq. (2.1).

Clearly, for a given traffic trace, |γ| = 1 if and only if all points lie perfectly on
a straight line in the Q-Q plot. It is important to note that γ ≥ 0.9 corresponds
to a Kolmogorov-Smirnov test for normality at significance 0.05, which supports
the hypothesis that the underlying distribution is normal. The values of γ
for the example trace in Figure 2.3 are, respectively, γT=100ms = 0.9986 and
γT=1s = 0.9981.

32 Datasets and Traffic Characteristics

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 0.6 0.7 0.8 0.9 1

F
(γ

)

γ

A
B
C

D
E
F

(a) T = 100ms

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 0.6 0.7 0.8 0.9 1

F
(γ

)
γ

A
B
C

D
E
F

(b) T = 1s

Figure 2.4: CDF of γ per location for all traces in our datasets; points are
sampled for better visualization.

For a better understanding of goodness of fit for traces of our dataset within
their respective locations, in Figure 2.4 we show the cumulative distribution
function (CDF) of γ for all traces per location for arbitrarily chosen timescales
of T = 100ms and T = 1s. At T = 100ms, around 56% of all traces have γ ≥ 0.9,
and at T = 1s it is around 83% of all traces. That is, at larger timescales most
traces from our dataset are at least in the “fairly Gaussian” level. Clearly, the
most problematic cases are traces from A and C, which comprise measurements
from small networks and quiet periods of the network (e.g., overnight). At
T = 100ms around 47% and 59% of traces from locations A and C, respectively,
have γ ≥ 0.9. At T = 1s, the amount of Gaussian traces becomes 50% and 85%
for A and C, respectively. The impact of lower number of active hosts and lower
traffic average on the Gaussianity fit is further addressed in Section 2.4.4.

2.4.3 Horizontal Traffic Aggregation

The horizontal traffic aggregation is defined by the size of the time bin T . In
this section we assess whether Gaussianity goodness of fit remains constant
over various timescales. That is, we want to find out if a value of γ at a
given timescale can give us an indication of how the traffic behaves at other
smaller or larger values of T . According to [71], traffic tends to be more
Gaussian-like at larger timescales and, therefore, larger horizontal aggrega-
tion of traffic is needed to justify Gaussian distribution. That’s because iso-
lated short term bursts, that would likely disturb Gaussianity fit, are smoothed

2.4. OVERALL TRAFFIC GAUSSIANITY ASSESSMENT 33

out due to averaging at larger timescales. Given that timescales from 5ms
to 1s dominate the QoS as perceived by users, we have chosen to work with
T = {0.001, 0.005, 0.01, 0.025, 0.05, 0.1, 0.5, 1}, all in seconds. Note that this is
the same range of timescales used throughout this thesis, and it has also been
used in previous works, such as [109].

 0.75

 0.8

 0.85

 0.9

 0.95

 1

1m
s

5m
s

10
m

s

25
m

s

50
m

s

10
0m

s

50
0m

s 1s

a
ve

ra
g
e

 γ

timescale

A
B
C

D
E
F

Figure 2.5: γ at various timescales for an example trace from each location.

Our analysis of the impact of vertical aggregation of traffic on its Gaussian
fit starts by a randomly selected example trace from each location. Each line
of the plot in Figure 2.5 presents the Gaussianity goodness of fit γ calculated
for each one of the example traces for all chosen timescales. From this plot it is
clear that, for these traces, traffic becomes less Gaussian on shorter timescales
mainly when the link aggregate is not too large in terms of transferred data,
which is the case for locations A, C and F . That is, the shorter T , the less
traffic is aggregated per time bin and the higher the traffic variance due to
bursts typically caused by individual hosts. A study on the impact of individual
hosts on the Gaussian fit of traffic is latter presented in Section 2.5.

According to [71], a very short T , i.e., lower than milliseconds, might be
too close to the packets’ transmission intervals. That would result in a time
series with a binary behavior, where we may have or have not packets being
transmitted within the period of length T (i.e., ON/OFF behavior). Such a
time series is, obviously, not Gaussian. This can be even more problematic if
we consider links that aggregate traffic of very few hosts, because we may have
binary-like traffic time series even in the milliseconds timescale. For example,
the example trace from location C shows a bad Gaussianity fit at T = 1ms.
This problem is alleviated when increasing T over a certain threshold, where γ
becomes fairly stable. The same behavior, but with less impact on γ, can be

34 Datasets and Traffic Characteristics

observed for traces from other locations. Interestingly, the example trace from
location B has a different behavior than others in Figure 2.5 because its goodness
of fit γ actually improves at smaller T . However, the observed fluctuation of
γ in this case is not large: γ is greater than 0.9 for all values of T . A similar
situation has also been observed in [110].

An important take away of the analysis in Figure 2.5 is that, on the one hand,
it would not be completely safe for an arbitrary location to assume Gaussianity
at very short timescales solely based on the fact that the traffic is Gaussian at
a larger timescale. That is, if the traffic is Gaussian at T = 1s, it does not
necessarily mean that the same traffic will remain Gaussian at T = 1ms. On
the other hand, Figure 2.5 also indicates that γ, to a wide extent, monotonously
increases with T and, hence, one can assume Gaussianity at timescale T1 for a
particular traffic if the same traffic is Gaussian at T0, and even more safely if it
is also Gaussian at T2, where T0 < T1 < T2.

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

1m
s

5m
s

10
m

s

25
m

s

50
m

s

10
0m

s

50
0m

s 1s 5s 10
s

γ

timescale

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

1
10

1
20

1
30

1
40

1
50

1
60

1
70

1
80

1
90

1

th
ro

u
g
h
p
u
t
(G

b
/s

)

time (s)

T=100ms
T=1s
T=10s

Figure 2.6: Example of decreasing γ with increasing T using a trace from loca-
tion E (left); and the traffic time series of the same trace at different T (right).

The averaging of traffic bursts at larger timescales might not improve Gaus-
sianity when these bursts belong to consecutive time bins or at least happen
very close to each other. Figure 2.6 shows an example in which increasing the
size of T does not necessarily increase the Gaussian fit of the traffic aggregate.
In this figure we have extended the range of timescales up to 10s for matters
of illustration. One can see that at T = 10s traffic is not Gaussian-distributed
anymore, while at very small timescales it has a very good γ. The time series
of this trace, which is an example from location E, clearly shows the problem.
In the period between 120s and 270s there are many traffic bursts that when
aggregated at larger timescales, such as 1s or 10s, are averaged together, cre-
ating huge traffic bursts that differ too much from the baseline traffic. As a
consequence the Gaussian fit of traffic is decreased. Note that we expect that

2.4. OVERALL TRAFFIC GAUSSIANITY ASSESSMENT 35

at very large timescales, e.g., minutes, the Gaussianity fit is lower. That is be-
cause daily traffic patterns might become very distinguishable in the time series,
resulting in a binary-like behavior, similar to what is found at very small T .

 0.6

 0.7

 0.8

 0.9

 1

1ms 5ms 10ms 25ms 50ms 100ms 500ms 1s

a
ve

ra
g

e
 γ

timescale

A
B

C
D

E
F

Figure 2.7: Average γ at various timescales for all traces in our dataset.

To validate the relationship between horizontal traffic aggregation and Gaus-
sianity fit, we have calculated the goodness of fit γ for all traces in our entire
dataset at various timescales. Figure 2.7 shows the average γ, and the respective
standard deviation, for all traces per location at the timescales of interest. The
idea is to show that, in general, traffic for a given location remains Gaussian
through different timescales. We can observe that for all locations, γ either
increases at larger timescales or remains almost constant. Certainly the most
interesting case is the one of location C where, in general, traffic is not Gaus-
sian at smaller timescales but it becomes Gaussian at larger timescales. This is
likely due to the low traffic averages of C that, consequently, at small T do not
aggregate enough traffic to justify Gaussian assumption. Moreover, again this
complies with statements from [71] on how Gaussianity should increase with
T . For the case of location A, however, traffic is mostly not Gaussian at any
of the considered timescales. Since A is a 24-hour measurement and it has a
quite low number of active hosts, one possible explanation is that mainly during
the overnight period traffic is very unsteady, i.e., strongly non-stationary and,
hence, non-Gaussian.

Finally, it is also interesting to know the consistency of γ of a location over
all considered timescales. Recall that Figure 2.5 shows γ for a set of example
traces and Figure 2.7 shows the average for all traces from a location at specific
timescales. One way to find out the stability of γ for each location is to compute,
individually for each trace, the standard deviation of the trace’s γ at various

36 Datasets and Traffic Characteristics

timescales. This metric was proposed in [110]. Hence, for a trace with gamma
γT for T = 1ms . . . , 1s, we compute

σγ =
�
Var[γT] . (2.3)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 0.2 0.4 0.6 0.8 1

σ
γ

ordered traces by σγ

A
B
C

D
E
F

Figure 2.8: Variance of γ across various timescales; points sampled for visual-
ization.

Figure 2.8 shows the results for each location with the traces sorted left-right
by their standard deviation σγ . The lines reveal that for more than 50% of all
traces σγ ≤ 0.05, and that for about 90% of all traces σγ ≤ 0.09. Analyzing
each location separately, we see that σγ < 0.02 for almost all traces from B and
D, and for more than 95% of traces from A, E and F , σγ < 0.04. For all traces,
except some from location C, σγ < 0.1. Only for around 5% of traces from C
σγ ≥ 0.1. These results strengthen our previous conclusions that Gaussianity is
quite constant across timescales, and that traffic exhibiting good Gaussian fit
at T0 and T2 is likely to be Gaussian also at T1.

2.4.4 Vertical Traffic Aggregation

Previous works [71, 110] have also studied the impact of vertical aggregation on
the Gaussianity of traffic. Vertical aggregation refers to the amount of aggre-
gated traffic sources. An important question is how many sources are needed
to guarantee the Gaussian characteristic of the traffic. Furthermore, we are
interested in a definition of traffic source that can be easily used to calculate
the number of active sources. For example, a traffic source is not necessarily
equivalent to a TCP connection. In [110] the authors attempted to quantify the
number of hosts (measured as number of observed IP addresses) necessary to

2.4. OVERALL TRAFFIC GAUSSIANITY ASSESSMENT 37

justify the Gaussianity assumption. To do so, they sampled traffic from ran-
domly selected hosts and compute γ for it. They conclude that few dozens of
hosts would be enough to justify traffic Gaussianity.

We believe that it can be risky to solely rely on the number of observed
hosts since this assumes that all hosts behave uniformly in all networks. It is
not clear whether the same number of hosts sufficient for Gaussianity in net-
work X would also be sufficient in network Y. For example, hosts in a university
campus network may behave completely differently from the sources observed in
a backbone link. Later in Section 2.5, we show that depending on the network,
the behavior of individual hosts might actually have a negative impact on Gaus-
sianity fit. An alternative approach is to relate the level of vertical aggregation
to the amount of traffic aggregated. However, this can be also dangerous since
individual hosts can also have high transmission speeds, as already observed
in [71]. Therefore, we study in the following the impact of vertical aggregation
on Gaussianity both in terms of (i) the number of hosts and (ii) the amount of
traffic aggregated.

For this analysis we have used three measurements, two already part of the
initially introduced dataset in Section 2.3, namely locations A and B, and one
extra measurement from location C, which we henceforth refer as C2 (note that
measurements of C2 aggregate traffic from less users than C because the former
took place during students vacations). All three measurements in this analysis
are a 24-hour traffic measurement. The difference is, however, that while A
comprises 24 hours of uninterrupted packet capturing, the other two consist
of captures of the first 15 minutes of each hour. The natural diurnal pattern
present in such measurements results in strong variations in the network usage.
In addition, hosts that are active overnight often behave quite differently from
those active during the daytime. This allows us to study the impact of wide
range of scenarios on the Gaussianity.

Remark: for the following analysis we show results in Figures 2.9, 2.10,
and 2.11. The size of the x-axis is defined by the number of traces, which is
given in the figure’s caption. Each trace corresponds to a tic in the x-axis.
Goodness of fit γ and traffic averages were calculated using bins of size T = 1s.
This remark is also valid for Figure 2.12 presented next in Section 2.4.5.

The top plot of Figure 2.9 shows γ for each 15-minute trace of location
A. One can see that γ oscillates a lot across the measurement period. Good
Gaussianity fit is found even during the overnight period, what would not be
expected considering the small number of active users in the network (bottom
plot). However, as shown in the center plot, between 23:00 and 01:00, there
is an increase on the traffic average which seems to be the reason of the good
fit. A smaller increase can also be observed from 02:00 to 04:00. This might
have been the result of automatic operations, such as overnight backups. The

38 Datasets and Traffic Characteristics

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

γ

 0

 100

 200

 300

 400

 500

m
e

a
n

 t
ra

ff
ic

 (
M

b
/s

)

 1

 5

 9

 13

 17

2
2

:0
0

0
0

:0
0

0
2

:0
0

0
4

:0
0

0
6

:0
0

0
8

:0
0

1
0

:0
0

1
2

:0
0

1
4

:0
0

1
6

:0
0

1
8

:0
0

2
0

:0
0

2
1

:4
5

#
 o

f
h

o
st

s
(x

1
0

3
)

time

Figure 2.9: Goodness of fit γ (top),
mean traffic rate (center) and number
of hosts (bottom), at T = 1s, for all
traces from A (96 traces).

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

γ

 0.3

 0.7

 1.1

 1.5

m
e

a
n

 t
ra

ff
ic

 (
G

b
/s

)

 0.4

 0.6

 0.8

 1

 1.2

 1.4

0
0

:0
0

0
2

:0
0

0
4

:0
0

0
6

:0
0

0
8

:0
0

1
0

:0
0

1
2

:0
0

1
4

:0
0

1
6

:0
0

1
8

:0
0

2
0

:0
0

2
2

:0
0

#
 o

f
h

o
st

s
(x

1
0

6
)

time

Figure 2.10: Goodness of fit γ (top),
mean traffic rate (center) and number
of hosts (bottom), at T = 1s, for all
traces from B (24 traces).

figure also shows that traffic averages during the day are generally higher due to
the higher number of active users in the network. Consequently, Gaussianity of
traffic tends to be more regular in the busiest period of the monitored link. The
results indicate that Gaussianity depends more on the behavior of hosts than
on the quantity of active hosts. Although we have more than thousand active
hosts at 01:00 and 21:45, the Gaussianity fit is low. Furthermore, Figure 2.9
shows that a high traffic rate can be a better indicator for good Gaussianity
than the number of users. Note that the opposite is not necessarily true.

Location B has many more hosts than location A, as seen in the bottom
plot of Figure 2.10. One of the reasons is that this link also transports traffic
from the residential buildings located on the university campus and the public
servers. As shown in the top plot of Figure 2.10, only the traces of 03:00 and
08:00 do not have a good enough Gaussianity fit of traffic, i.e., γ < 0.9. In these
moments, traffic averages and number of active hosts were quite low compared

2.4. OVERALL TRAFFIC GAUSSIANITY ASSESSMENT 39

to other periods of the day. Although one cannot argue that Gaussianity is as
bad as observed for the overnight period in A (Figure 2.9), it is clear that it is
unstable between 00:00 and 09:00. Again it seems that the behavior of a few
users determine the Gaussian characteristic during the light-loaded period of the
link and, once again, we observe that the high traffic rate is a better indicator
for a high γ value than the number of users. For example, γ closely follows the
traffic rate in the period from 19:00 to 23:00. The observation that the opposite
is not necessarily true remains valid.

Figure 2.11 shows the goodness of fit γ for the additional measurement C2.
As one can see in the top plot of this figure, although the values of γ are not
very high (i.e., close to 0.9), they are fairly stable. Indeed, it seems that it is
affected neither by the traffic rate nor by the number of hosts. We believe that,
due to the period of vacations, the traffic characteristics mainly arise from the
rather constant behavior of the university’s employees and automated processes,
while variations caused by, for example, file transfers are rare. The main take
away from Figure 2.11 is that with links that have low capacity or low activity
the overall host behavior becomes the dominating factor.

2.4.5 Long-term Traffic Evolution

The goal of the study presented in this section is to assess whether long-term
traffic evolution has an effect on the Gaussian property of traffic. While one
expects that the increasing traffic rates in the past years would actually improve
Gaussianity fit, the motivation behind this study is that traffic evolution would
potentially be caused by recently emerged applications that have very distinct
behavior. One the one hand, services such as Facebook would be responsible for
many connections with few transferred data (i.e., short flows) [52]. On the other
hand, online video streaming (e.g., YouTube) and cloud storage (e.g., Dropbox)
services would be responsible for connections with, generally, large amount of
transferred data [48, 52].

To do so, we use an additional measurement from location F , which we
name F2. This extra dataset comprises 178 15-minute long traces dating from
August 2006 to December 2012, totaling more than 44 hours of packet captures.
Our choice for starting with measurements from 2006 is because, to the best
of our knowledge, the last scientific publication that addressed the Gaussianity
fit of traffic aggregates was [110] in 2006. Traces from F2 have an average of
1 million hosts. Note that traces dating from 2011 or older have a much lower
average number of hosts and some of those from 2012 have a much higher number
of hosts (bottom plot in Figure 2.12). For unknown reasons, the measured link
experienced several moments of huge peaks on the number of hosts transferring
data from September 2011 to December 2012. However, these peaks on number

40 Datasets and Traffic Characteristics

 0.5

 0.6

 0.7

 0.8

 0.9

 1

γ

 0

 10

 20

 30

 40

 50

 60

m
e

a
n

 t
ra

ff
ic

 (
M

b
/s

)

 1

 3

 5

 7

 9

 11

 13

0
0

:0
0

0
2

:0
0

0
4

:0
0

0
6

:0
0

0
8

:0
0

1
0

:0
0

1
2

:0
0

1
4

:0
0

1
6

:0
0

1
8

:0
0

2
0

:0
0

2
2

:0
0

#
 o

f
h

o
st

s
(x

1
0

3
)

time

Figure 2.11: Goodness of fit γ (top),
mean traffic rate (center) and number
of hosts (bottom), at T = 1s, for traces
of an extra 24-hour measurement pe-
riod from C2 (24 traces).

 0.8

 0.85

 0.9

 0.95

 1

γ

γ per trace
avg γ per year

 0

 100

 200

 300

 400

m
e

a
n

 t
ra

ff
ic

 (
M

b
/s

)

avg rate per trace
avg rate per year

 0

 2

 4

 6

 8

 10

08
-2

00
6

03
-2

00
7

09
-2

00
7

04
-2

00
8

10
-2

00
8

05
-2

00
9

11
-2

00
9

06
-2

01
0

12
-2

01
0

06
-2

01
1

01
-2

01
2

07
-2

01
2

#
 o

f
h

o
st

s
(x

1
0

6
)

month and year

Figure 2.12: Goodness of fit γ (top),
mean traffic rate (center) and number
of hosts (bottom), at T = 1s, for traces
of an extra long-term measurement pe-
riod from F2 (178 traces).

of hosts did not result in abnormal traffic rates, as seen in the center plot of in
Figure 2.12. Unfortunately, MAWI does not provide additional details of such
measurements that could potentially lead us to a better understanding on the
causes for these differences in the number of hosts.

The top plot in Figure 2.12 shows the Gaussian goodness of fit γ calculated
for all traces from F2. We observe that the (already good) average goodness of
fit has only slightly increased from 2006 to 2012, while traffic throughput has
more than doubled. It should be noted, though, that the increased throughput
results in less variation of γ. The number of hosts has not changed significantly
during the measurement period. The peaks on the number of hosts in traces
from end of 2011 and from 2012 did not result in worse or better Gaussianity
fit.

2.5. CAUSES OF BAD GAUSSIAN FIT 41

2.5 Causes of Bad Gaussian Fit

In the previous section we have assessed the Gaussianity “degree” for the whole
measurement dataset used in this thesis. However, considering the adopted
dimensioning formula from [109], Gaussianity fit is of paramount importance
for the problem of link dimensioning in the context of this thesis. Therefore,
we believe that it is also important to understand the reasons for traffic being
not Gaussian-distributed. Our assumptions are that: (1) Gaussianity is mostly
disrupted by traffic bursts that are much higher than the traffic average; (2)
these bursts are usually generated by one or very few applications; and (3)
there are very few hosts creating those traffic bursts.

Therefore, in this section we study the relationship between traffic properties
and hosts behavior and the Gaussianity fit of traffic. We use traces from three
locations of our whole dataset, namely, B, C and E. First, we study the impact
of traffic bursts on the degree of Gaussianity fit. Then, we identify traffic bursts
and analyze the applications behind them. Finally, we assess the impact of
individual hosts behavior on Gaussianity.

2.5.1 Impact of Bursts on Gaussianity

Normal distributed traffic (Gaussian) is expected to have bursty and calm mo-
ments. By definition, if the traffic aggregate Li(T) follows a normal distribu-
tion Norm(ρT, υ(T)), the probability that it exceeds a threshold x is given by
the complementary CDF

P (Li(T) > x) = 1− 1

2

�
1 + erf

�
x− ρ√
2σ2

��
. (2.4)

Figure 2.13 shows the difference between two traces from location E with low
and high Gaussianity fit, respectively. The curve in the bottom half of these plots
shows the traffic aggregate of the sample traces over the measurement period
of 15 minutes. Note that in this figure we have chosen T = 2s for visualization
purposes, while for the following experiments in this and next subsections, we use
T = 100ms and T = 1s. The trace of Figure 2.13a has γ = 0.9977, which is one
of the highest Gaussianity fir among all traces of our dataset. One can clearly see
that traffic of this trace has regular ups and downs and in any moment a burst
really protrudes from the baseline traffic. Contrariwise, the trace of Figure 2.13b
has γ = 0.8175, which is the lowest goodness of fit for traces from location E.
In this case, one can easily notice the very high bursts during the time period
50–200s and at time 420s. (The analysis of the traffic shares presented in the
top half of plots of Figure 2.13 is done in Section 2.5.3).

42 Datasets and Traffic Characteristics

101

102

103

104

105

#
 o

f
h

o
st

s

25% 50% 90% 99% 100%

0.9

1

1.1

1.2

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900

th
ro

u
g

h
p

u
t

(G
p

/s
)

time (s)

throughput

(a) Good Gaussian trace (γ = 0.9977)

100

101

102

103

104

105

#
 o

f
h

o
st

s

25% 50% 90% 99% 100%

0.3

0.4

0.5

0.6

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900

th
ro

u
g

h
p

u
t

(G
p

/s
)

time (s)

throughput

(b) Bad Gaussian trace (γ = 0.8175)

Figure 2.13: Traffic aggregate (bottom half) and traffic shares (top half) at
T = 2s for two sample traces from location E.

We have manually inspected and compared several traces with poor and
good Gaussianity and noticed that such bursts are typical for poorly Gaussian
traces. In order to assess this behavior systematically, we define a burst as a
time bin where the traffic aggregate exceeds the threshold θ defined by

θ = ρ+ 3σ . (2.5)

That is, θ is three standard deviations above the trace average rate ρ. A similar
definition of burstiness has been used in [100, 73]. According to Eq. (2.4) this
should only happen with probability 0.00135 in perfect Gaussian traffic.

The plots of Figure 2.14 show for each trace of different locations its Gaussian
fit γ and the percentage of time bins that exceed the above threshold θ, for
T = 100ms (left) and T = 1s (right). In these plots traces are sorted left-right

2.5. CAUSES OF BAD GAUSSIAN FIT 43

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1 3 5 7 9 11 13 15 17 19 21 23

γ

traces ordered by γ

γ

%

T=100ms

 1 3 5 7 9 11 13 15 17 19 21 23
0

0.5

1

1.5

2

2.5

3

3.5

%
 o

f
tim

e
 b

in
s

γ

%

T=1s

(a) Traces from B

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1 10 19 28 37 46 55 64 73

γ

traces ordered by γ

γ

%

T=100ms

 1 10 19 28 37 46 55 64 73
0

0.6

1.2

1.8

2.4

3

3.6

%
 o

f
tim

e
 b

in
sγ

%

T=1s

(b) Traces from C

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1 3 5 7 9 11 13 15 17 19

γ

traces ordered by γ

γ

%

T=100ms

 1 3 5 7 9 11 13 15 17 19
0.3

0.6

0.9

1.2

1.5

1.8

2.1

%
 o

f
tim

e
 b

in
s

γ

%

T=1s

(c) Traces from E

Figure 2.14: Percentage of time bins with bursts at T = 100ms (left) and at
T = 1s (right).

by their Gaussianity fit, i.e., trace 1 (left on the x-axis) is the trace with the
lowest γ. No that the traces positioning in the x-axis varies from T = 100ms to
T = 1s due to their different values of γ at different timescales. For example,
trace 1 in the left side plot of Figure 2.14a may not be the same as trace 1 in
the right side plot of the same figure. Moreover, the colors of the background in
these plots indicate the regions of different γ values: the red means traces have
γ < 0.9; the yellow means γ ≥ 0.9 and γ < 0.95; and green means γ ≥ 0.95.
These considerations are also valid for plots from Figure 2.16 to 2.17.

44 Datasets and Traffic Characteristics

Although the resulting curves in these plots depict strong fluctuations inde-
pendently of T , we observe an inverse relationship between the amount of bursts
exceeding the threshold and the Gaussian fit. That is, non-Gaussian traces tend
to have more bursts than Gaussian ones. This tendency is highlighted by the
least-squares-fitted diagonal dotted line in the plots of Figure 2.14. Note that
this is not a trivial outcome since non-Gaussianity could be caused by the ab-
sence of bursts as well. In fact, a few non-Gaussian traces have a very small
number of bursts.

2.5.2 Impact of Applications on Gaussianity

In the previous section we have shown the relationship between bursts and
(non-)Gaussianity. In this section, we study the impact of traffic bursts from
certain applications on the Gaussianity fit. Note that we use the straightforward
port-matching method for identifying applications. However, we are aware of
the drawbacks of such method. Challenges related to traffic classification and
its connection to Gaussianity are further discussed in Section 2.5.4.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0
 1

00
 2

00
 3

00
 4

00
 5

00
 6

00
 7

00
 8

00
 9

00

th
ro

u
g

h
p

u
t

(G
b

/s
)

time (s)

all traffic
port 563

(a) Trace from B, γ = 0.8940

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0
 1

00
 2

00
 3

00
 4

00
 5

00
 6

00
 7

00
 8

00
 9

00

th
ro

u
g

h
p

u
t

(G
b

/s
)

time (s)

all traffic
ports 80,443

(b) Trace from C, γ = 0.7853

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0
 1

00
 2

00
 3

00
 4

00
 5

00
 6

00
 7

00
 8

00
 9

00

th
ro

u
g

h
p

u
t

(G
b

/s
)

time (s)

all traffic
ports 80,443

(c) Trace from E, γ = 0.8175

Figure 2.15: Traffic aggregates at T = 1s and the port causing the bursts.

Figure 2.15 shows the traffic aggregates of three sample traces, from different
locations, with a low Gaussianity fit. The upper curve gives the aggregate of
all traffic. We observe several bursts. For the trace from location B, the lower
curve only shows the aggregate for traffic transferred on port 563, i.e., Network
News Transfer Protocol (NNTP). For the sample traces from locations C and
E, the lower curve shows the aggregate of traffic transferred on ports 80 and 443
(i.e., HTTP and HTTPS, respectively). It can be seen that the protocol-specific
curves follow closely the shape of the bursts for all the three examples. In fact,
we have observed that typically a burst consists entirely of traffic from only one
application and, hence, removing the specific traffic of such application from the

2.5. CAUSES OF BAD GAUSSIAN FIT 45

trace would also remove the bursts. However, it is important to consider that
all bursts in a trace might not necessarily be caused by the same application.

In order to validate this observation for the entire dataset, we have calculated
for each burst that exceeds θ (as defined in Eq. (2.5)) the share of the traffic
on the most active port in the time bin of that burst, and computed an average
share for all bursts of a trace. The plots in Figure 2.16 show the resulting
(average) traffic share for T = 100ms (left) and T = 1s (right). Again, traces
are sorted on the x-axis by their respective Gaussianity fit γ and the background
color indicates their“degree of fit” in the same way as in Figure 2.14. We observe
that for traces with low γ, the traffic bursts that exceed θ mainly consist of traffic
from the most active ports, and that this relationship weakens with increasing
γ. Note that the share never reaches 100%. Clearly, this is because the time
bin containing the burst also contains normal baseline traffic. Furthermore,
we observe a generally high share for all traces of location C. This is because
HTTP(S) is the most dominant traffic at this location (as one can see in the
example trace of Figure 2.15b).

2.5.3 Impact of Individual Hosts On Gaussianity

The previous analysis has shown that bursts are mostly caused by single appli-
cations. In this section we investigate how individual hosts contribute to the
traffic in such bursts. The top half of the plots in Figure 2.13 show the absolute
number of most active hosts that are responsible for 25%, 50%, 90%, 99% and
100% of the traffic sent in a given time bin. More formally, let b1(t) ≥ b2(t) ≥ . . .
be the sorted number of bytes sent by the hosts in the time bin t. That is, b1(t)
is the number of bytes sent by the most active host in the time bin t, b2(t) is
the number of bytes sent by the second most active host in t, and so forth. The
number qs(t) of the most active hosts responsible for a share s of the traffic in
time bin t is defined as

qs(t) = min�x
i=1 bi≥s·B(t)

x, (2.6)

where B(t) is the total number of bytes sent in the time bin t.
One can see that while for the good Gaussian trace in Figure 2.13a the

number of hosts that are responsible for any share of the traffic remains quite
constant over time. In any moment the number of contributing hosts drops con-
siderably, not even during the highest traffic burst of this example trace, around
690s. On the contrary, for the trace with bad Gaussianity fit in Figure 2.13b,
the number of hosts that contribute to a certain share of traffic significantly
drops during bursts. For example, during the burst at time 420s, only one host
sends 25% of the traffic, which more or less corresponds to the difference be-
tween the 0.45 Gb/s peak throughput of the burst and the baseline throughput

46 Datasets and Traffic Characteristics

 0.85

 0.88

 0.91

 0.94

 0.97

 1

 1 3 5 7 9 11 13 15 17 19 21 23

γ

traces ordered by γ

γ

%

T=100ms

 1 3 5 7 9 11 13 15 17 19 21 23
20

30

40

50

60

70

%
 o

f
tr

a
ff

ic

γ

%

T=1s

(a) Traces from B

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1 10 19 28 37 46 55 64 73

γ

traces ordered by γ

γ

%T=100ms

 1 10 19 28 37 46 55 64 73
0

16

32

48

64

80

96

%
 o

f
tr

a
ff

ic

γ

%T=1s

(b) Traces from C

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1 3 5 7 9 11 13 15 17 19

γ

traces ordered by γ

γ

%

T=100ms

 1 3 5 7 9 11 13 15 17 19
30

40

50

60

70

80

%
 o

f
tr

a
ff

ic

γ

%

T=1s

(c) Traces from E

Figure 2.16: Share of the most active applications in bursts at T = 100ms (left)
and at T = 1s (right).

of 0.35 Gb/s, i.e., that burst is caused by traffic from one single host. Outside
the bursts, a much larger number of hosts contribute to the 25% traffic share. In
general, the non-bursty part of the traffic is in accordance with the observations
made in [14] that typically 90–95% of IP traffic is generated by 10–5% of the
sources. The authors of [14] also found bursts in their traffic, but mostly con-
nected them to attacks. However, after a manual inspection of several bursts,
we consider it unlikely that the bursts in our traces are caused by malicious

2.5. CAUSES OF BAD GAUSSIAN FIT 47

 0.85

 0.88

 0.91

 0.94

 0.97

 1

 1 3 5 7 9 11 13 15 17 19 21 23

γ

traces ordered by γ

γ

top-1
top-2
top-5

T=100ms

 1 3 5 7 9 11 13 15 17 19 21 23
0

2

4

6

8

10

%
 o

f
tr

a
ff

ic
 in

 p
e

a
ks

γ

top-1
top-2
top-5

T=1s

fo
r

T
=

1
s,

 x
1

0

(a) Traces from B

 0.65

 0.72

 0.79

 0.86

 0.93

 1

 1 10 19 28 37 46 55 64 73

γ

traces ordered by γ

γ

top-1
top-2
top-5T=100ms

 1 10 19 28 37 46 55 64 73
0

2

4

6

8

10

%
 o

f
tr

a
ff

ic
 in

 p
e

a
ks

γ

top-1
top-2
top-5T=1s

fo
r

T
=

1
s,

 x
1

0

(b) Traces from C

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1 3 5 7 9 11 13 15 17 19

γ

traces ordered by γ

γ

top-1
top-2
top-5

T=100ms

 1 3 5 7 9 11 13 15 17 19
0

1

2

3

4

5

%
 o

f
tr

a
ff

ic
 in

 p
e

a
ks

γ

top-1
top-2
top-5

T=1s

fo
r

T
=

1
s,

 x
1

0

(c) Traces from E

Figure 2.17: Share of traffic for top-hosts (IPs) in bursts at T = 100ms (plots)
and at T = 1s (plots).

activities. The size of the bursts also makes them very unlikely to be caused by
source-level bursts on packet level [66].

Once again we have validated this observation for all traces from locations
B, C and E. We have calculated for each burst higher than θ the share of the
most active host, the two most active hosts, and the five most active hosts to
the traffic in that burst and computed the average shares for all bursts of a
trace. The plots in Figure 2.17 show the resulting traffic shares for each trace
per location at T = 100ms (left) and at T = 1s (right). We observe for all traces

48 Datasets and Traffic Characteristics

that, independently of the Gaussianity fit, very few hosts are responsible for a
significant amount of transferred traffic during the bursts. In some situations,
at T = 1s, less than 5 hosts are responsible for more than 80% of all burst traffic
in traces from location B and C and more than 35% in traces of E.

2.5.4 Challenges on Traffic Classification

In this section we have identified applications to the level of protocol by match-
ing the port numbers (e.g., 80 and 443 to HTTP and HTTPS, respectively).
However, it is known that a plethora of applications are currently running on
top of HTTP(S) and identifying those applications is not a straightforward task.
The authors of [36, 107] point out that many applications do not have IANA
registered ports. Instead, they make use of well-known ports or tunneling to
prevent detection and deceive filtering or firewalls. For instance, BitTorrent
can also make use of random ports, complicating their identification by default
communication ports.

Sophisticated traffic classification almost precludes application identification
with goals of Gaussianity assessment. That is, to ultimately have a sort of rule of
thumb that would allow us to make assumptions on the degree of Gaussianity of
a given traffic aggregate based on the mix of applications found within it seems
to be more complex than simply measuring the traffic for a short period and
performing the same operations as we have done in this paper (i.e., computing
Gaussianity goodness of fit γ). Nonetheless, we have shown that bursts of traffic
tend to belong to a handful of hosts and being transferred on a very limited
range of ports, even for large networks. Hence, we also see the work presented
in this section as a first contribution toward an application-oriented method
to assess the Gaussianity assumption: instead of performing a costly network-
wide measurement on packet-level, researchers or network operators would first
identify hosts that contribute most to bursts in the main traffic, and later they
would explore further the applications that are being used by those hosts (i.e.,
to a higher level than the application protocol that they use).

2.6 Concluding Remarks

The datasets presented in this chapter comprise extensive measurements from
four continents and covers diverse scenarios, from small campus networks to
10 Gb/s backbone links. These datasets are composed by recent packet captures,
which were done without applying any sort of sampling. These datasets are
later used in the validation of the proposed link dimensioning approaches in
this thesis.

2.6. CONCLUDING REMARKS 49

We have verified the assumption of Gaussianity fit of our entire dataset. Our
results show that the assumption of Gaussianity still holds for current network
traffic, indicating that the evolution of the Internet in the past years has not
had a significant impact on its Gaussian characteristics. Indeed, most of the
analyzed measurement locations show a high or very high overall degree of
Gaussianity for a wide range of considered aggregation timescale. However, this
degree can vary depending on the level of vertical aggregation and is usually
highest during the busiest period of the network, i.e., during daytime. Our
findings also suggests that it is safer to relate the degree of Gaussianity to traffic
throughput than to the number of active hosts for high-speed links. The number
of active hosts is less reliable as indicator for Gaussianity because hosts from
different networks may behave differently. Furthermore, we have illustrated the
invariance of the Gaussianity property by our study of a trans-Pacific backbone
link over a period of six years. Although the amount of traffic transported by
that link has considerably changed during the measurement period, the degree
of Gaussianity has nearly stayed constant. Therefore, we can conclude that the
mathematical models that build up the link dimensioning formula from [109]
are still valid, especially for the, from the viewpoint of network operators, most
interesting periods of high network activity.

We have shown that the degree of Gaussianity of network traffic is directly
linked to the presence of extreme traffic bursts. While fairly Gaussian network
traffic is mostly burst free, traffic with a low Gaussian fit is up to 3.6% of its du-
ration bursty. In addition, we have shown that these bursts are mostly created
by single applications. In particular, traffic bursts at two of our measurement
locations mostly consist of HTTP(S) traffic. We have also observed that bursts
in traffic with a low Gaussian fit tend to consist of traffic from only one appli-
cation. Finally, we have shown that the traffic inside bursts is sent from only
a few hosts. Our results enable the conclusion that poor Gaussianity is caused
by short but intensive activities of single network hosts. This suggests that
the bursts are related to the transfers of big files using unlimited access speeds
over fast links. Our findings confirm that the concept of alpha and beta traffic,
introduced by [100] in 2001, is still valid for recent network traffic. However,
it is worth to note that two of our measurement locations, namely B and C,
are university core routers that connect a rather homogeneous set of hosts with
identical, or at least similar, link speeds to the Internet. While the authors of
the previous work speculated that the diversity of clients could be a reason for
the existence of alpha and beta traffic, our results indicate that the cause can
probably be found in the characteristics of the servers.

Recognize that the very molecules that make up your body, the atoms that

construct the molecules, are traceable to the crucibles that were once the centers

of high mass stars that exploded their chemically rich guts into the galaxy,

enriching pristine gas clouds with the chemistry of life. So that we are all

connected to each other biologically, to the earth chemically and to the rest

of the universe atomically. That’s kinda cool! That makes me smile and I

actually feel quite large at the end of that. It’s not that we are better than the

universe, we are part of the universe. We are in the universe and the universe is in us.

— Neil deGrasse Tyson

CHAPTER 3

sFlow-based Link Dimensioning

Monitoring technologies that implement packet sampling techniques are

widely used by network operators because they are scalable to high-speed

links while providing higher granular data than SNMP counters. However,

sampled data only gives a partial view of the actual observed traffic. In

this chapter we demonstrate the feasibility of using sampled traffic data

for link dimensioning. Publications related to this chapter are [42, 43].

Chapter 2:

Measurements

Chapter 3:

sFlow

Chapter 4&5:

NetFlow/IPFIX

Chapter 6:

OpenFlow

Chapter 7:

Conclusions

The organization of this chapter is as follows:

• Section 3.1 provides background and literature review on packet
sampling, and states the contribution of this chapter.

• Section 3.2 introduces the sFlow monitoring tool.

• Section 3.3 details the two other sampling algorithms studied in this
chapter, namely, Bernoulli and n-in-N sampling.

• Section 3.4 proposes approaches to better estimate traffic variance
from sampled data.

• Section 3.5 shows experimental results validating the use of sampled
data and adapted variance formulas for link dimensioning.

• Section 3.6 presents a study assessing the impact of the exporting
process of sampled data on the link dimensioning.

• Section 3.7 concludes this chapter.

52 sFlow-based Link Dimensioning

3.1 Background

Packet sampling strategies are adopted by network operators to perform traffic
measurements in high-speed links due to the massive volume of transferred data.
These strategies help to reduce the excessive load of measurements storage and
processing, while still providing highly granular traffic data – we are still talking
about packet captures after all. To our goal of an easy-to-use link dimensioning,
packet sampling tools are very attractive alternatives to measure traffic.

Packet sampling techniques range from simple approaches, such as system-
atic or probabilistic, to more complex techniques that select packets based on
their content and flow properties. However, in our context of link dimensioning,
the most important is the correct choice of the sampling rate. The sampling rate
indicates how many packets are to be sampled from the whole observed traffic.
For selecting the sampling rate, network operators need to find a common term
between the required measurement effort and the granularity of the measured
data. That is, by setting higher sampling rate, on the one hand, the measured
data is more granular, but this comes at the cost of requiring more measurement
efforts since more packets will be sampled. On the other hand, lower sampling
rates are computationally less demanding, but they might not provide enough
data for having a realistic overview of the observed traffic during the measured
period.

There are several software that implement packet sampling for network traffic
measurements and sFlow [62, 95, 102] is the most famous among them. sFlow,
which is further described in Section 3.2, implements its own sampling algorithm,
which behaves similar to the n-in-N sampling [119]. Sampling techniques can
also be found as integrating part of other measurement technologies, such as the
Random Sampled NetFlow [27] that supports 1-in-N sampling.

The challenge of using packet sampling for link dimensioning is that the
formula in Eq. (1.2) (from [109]) requires traffic average rate and traffic variance,
which might not be easily computed out of sampled data. Following we present
a brief literature review on the use of packet sampling in network operations
and management. Then, we clearly state the contribution of this chapter.

3.1.1 Literature Review

Concerning packet sampling techniques, surprisingly, not many previous works
have addressed their use on network operations and management. For example,
in [21] the authors propose an adaptive sampling approach in which they can
estimate traffic load and variance from sampled packets. Such approach is based
on the assumption that sampling errors arise from the dynamics of packets sizes
and counts, and that sampling with static rate cannot guarantee accuracy on

3.2. SFLOW MONITORING TOOL 53

estimation of traffic statistics. In [22] the authors propose an adaptive sampling
algorithm to estimate flow sizes and, more recently, in [114] the authors imple-
ment a sampling-based monitoring algorithm that focuses on accurate estimates
of throughput for individual flows. Moreover, the use of packet sampling has
also been addressed in other areas. For example, in [13] and [77] the authors
assess the impact of sampling on anomaly detection operations. To the best
of our knowledge, the impact of basic packet sampling techniques on the link
dimensioning process has not yet been investigated by previous works.

3.1.2 Contribution

Aiming at an easy-to-use link dimensioning approach, we do not propose novel
sampling algorithms. Instead, we focus on sFlow, 1-in-N and Bernoulli sam-
pling algorithms, which are mostly found within traffic measurement tools. The
Bernoulli algorithm is not widely adopted as the other two. However, the deci-
sion for including this algorithm in our study was motivated by the fact that it
is a well-known and standard sampling algorithm [119].

The challenge of using sampled data for link dimensioning is that the for-
mula from Eq. (1.2) requires the traffic rate and variance, both statistics that
can be directly affected by the packet sampling. In this chapter we propose ap-
proaches that provide more accurate estimates of traffic variance from sampled
data taking into account the additional variance introduced by the sampling
algorithms.

Besides the study on the impact of packet sampling on link dimensioning,
we also investigate the impact of the exporting process of the sFlow tool. The
exporting strategy implemented by sFlow introduces additional abstraction of
the individual packet timestamp. That is, many sampled packets are sent from
the measurement point to a collector as a batch sharing a single timestamp. Ul-
timately, this indirectly impacts on the accuracy of the link dimensioning, since
packet inter-arrival time is lost and the estimation of traffic variance becomes
even more challenging.

The impact of the sampling algorithms on link dimensioning, as well as the
efficacy of the proposed formulas to estimate variance from sampled data, is
assessed using the traffic measurements dataset introduced in Chapter 2.

3.2 sFlow Monitoring Tool

sFlow [102] is a traffic monitoring tool that uses packet filtering and sampling
to provide scalable traffic measurements at the packet level for high-speed net-
works. Scalability is a major requirement for monitoring large amounts of traffic
in high-speed links. For example, in [65] the authors presented an overview of

54 sFlow-based Link Dimensioning

the traffic at AMS-IX that was measured using sFlow. In 2006 the AMS-IX
was – and so it remains – the largest Internet exchange in the world. The au-
thors used sFlow to measured traffic aggregates that averaged 136 Gb/s with
peaks up to 208 Gb/s. As for today, AMS-IX still uses sFlow to monitor and
measure their traffic1, which averages around 1.8 Tb/s with peaks higher than
2.5 Tb/s. Another example of deployment of sFlow is by the network operators
at CERN [59], which need to monitor and measure massive amounts of e-science
data every day.

One of the key points that make sFlow so popular is the ease of finding net-
work devices that have sFlow preinstalled as part of their default configuration.
An exhaustive list of sFlow-enabled devices can be found in the sflow.org, the
official sFlow forum2.

In this section we initially describe the overall sFlow operation and then we
detail both the data exporting procedure and the sampling algorithm imple-
mented by commercial sFlow tools. There are many commercial implementa-
tions of sFlow, but the InMon Corporation’s sFlow [62, 95] and pmacct [76] are
likely to be the most common and widely deployed ones. Therefore, descriptions
and implementations of sFlow in this chapter are in accordance with these two
tools. Operations that are not of interest to the context of link dimensioning,
such as packet filtering, are not described in details.

3.2.1 sFlow Overall Operation

The general operation of sFlow is shown in Figure 3.1. sFlow operation can be
roughly divided between two entities, namely agent and collector. The sFlow
agent is a software located at the router, switch or standalone probe device,
and it is responsible for monitoring and measuring the traffic and handling the
sampled data. The agent can be remotely accessed and controlled via a sFlow
MIB. The sFlow agents export sampled data to a centralized collector using
sFlow datagrams. At the collector the sampled data is analyzed and stored.

Every observed packet by the sFlow agent undergoes two stages: filtering
and sampling. The former allows the agent to, e.g., drop packets that belong to
flows that are not of interest. All packets that are not discarded by the filtering
process are subjected to the sampling algorithm. Note that for the context of
link dimensioning we are primarily interested in the whole traffic aggregate and,
hence, we do not take packet filtering into consideration in our analysis. The
sampling algorithm implemented by InMon [62, 95] or pmacct [76], as well as by
other sFlow tools, is later detailed in Section 3.2.3. Before being exported to the
collector, sampled packets are kept in a buffer within the agent. As explained in

1https://www.ams-ix.net/technical/statistics/sflow-stats
2http://www.sflow.org/products/network.php

3.2. SFLOW MONITORING TOOL 55

sFlow agent

filter sample buffer export

agent

agent sFlow collector

datagram

Figure 3.1: sFlow exporting process.

Section 3.2.2, the waiting period in the buffer before being exported results in
an additional problem for the link dimensioning approach, which is the missing
timestamp of the sampled packets.

3.2.2 sFlow Exporting of Sampled Data

The exporting procedure in sFlow defines when sampled packets are sent from
the sFlow agent to the collector. All sampled packets are sent from the agent to
the collector using a sFlow datagram with maximum size of 1500 bytes. sFlow
defines two conditions for exporting buffered packets at the agents: (1) there
are enough packets to fill in a sFlow datagram; or (2) the oldest sampled packet
in the buffer should not wait for longer than 1 second to be exported to the
collector.

There is one important characteristic from the exporting procedure that
might directly impact on the link dimensioning problem. The sampled infor-
mation of packets does not include their respective timestamps. At the collec-
tor, therefore, all the received sampled packets that are grouped into the same
datagram share the same timestamp, which is the datagram’s timestamp. The
amount of missing information depends on the link load, sampling rate and
agent’s buffer size (the last is defined by the capture length). Clearly, the con-
sequences of not having the packets timestamps is not knowing how the packets
are spread in time (i.e., packets inter-arrival time) and, hence, it might become
difficult to estimate traffic variance out of the sampled data.

Note that this is the way sFlow is defined in [95] and, hence, implemented
by tools that follow such standard. It is perfectly possible to modify the source
code of: (1) the sFlow agent to include packets timestamps within sampled
packets headers; (2) the sFlow datagram to carry this extra information; and
(3) the sFlow collector to process the individual timestamps. However, aiming
at reduced efforts on the traffic measurements, and considering that operators

56 sFlow-based Link Dimensioning

will not modify the software that comes already embedded in their network
devices, we consider the implementation of sFlow as defined in [95].

3.2.3 sFlow Sampling Algorithm

The sampling algorithm described in this section is the same implemented by
tools such as InMon’s sFlow [62] and pmacct [76]. In the sFlow documentation
the sampling algorithm is referred as random sampling. However, to avoid con-
fusion with the 1-in-N random sampling of [119], in this thesis we refer to the
algorithm of Figure 3.2 as sFlow sampling.

Figure 3.2 shows the pseudo-code of the sFlow sampling algorithm. It is a
rather straightforward algorithm in which the decision of sampling a packet is
based on a randomly generated counter such that in average 1-in-N packets are
sampled. On line 7 the counter s is assigned with a random value from the
function on line 2. The counter s tells the algorithm how many packets to skip
before sampling one. This is done by progressively decrementing s for every
received packet (line 9), until it becomes zero, what means that the current
packet must be sampled and a new random counter assigned to s (lines 10–12).
Typically, the random number generator yields uniformly distributed numbers
and is seeded with the system’s current time (line 6).

in: maximum skip N
in: input stream of packets seen by the monitoring point
out: output stream of sampled packets

1: function GetSkip()
2: return randomNatural(1..2 ·N − 1)
3: end function
4:

5: procedure sFlowSampling(input,output)
6: seed random number generator
7: s := getSkip()
8: while packet pkt available from input do
9: s := s− 1

10: if s = 0 then
11: sample packet pkt to output
12: s := GetSkip()
13: end if
14: end while
15: end procedure

Figure 3.2: sFlow sampling algorithm.

3.3. ALTERNATIVE SAMPLING METHODS 57

3.3 Alternative Sampling Methods

In this section we introduce two additional sampling algorithms further used
in this chapter for assessing the impact of sampled data on link dimensioning.
Although there are many works proposing new sampling strategies that take
into account packets and flows properties, given our goal of an easy-to-use link
dimensioning, we only consider algorithms that can be found in traffic monitor-
ing tools and that have been standard. That is the case for the above presented
sFlow sampling, as well as it is the case for the Bernoulli and the n-in-N sam-
pling algorithms [119] both described in this section.

3.3.1 Bernoulli Sampling

In Bernoulli sampling, described in [119], each packet is independently sampled
with constant probability p. Figure 3.3 shows the pseudo-code for Bernoulli
sampling as implemented by us in this thesis. For every received packet, on
line 8 the variable s is assigned with a real random number between 0 and 1,
obtained from the function in line 2. The current packet is sampled if the value
of s is less than the defined sampling probability p (lines 9–10).

in: probability p
in: input stream of packets seen by the monitoring point
out: output stream of sampled packets

1: function GetNumber()
2: return randomReal(0..1)
3: end function
4:

5: procedure BernoulliSampling(input,output)
6: seed random number generator
7: while packet pkt available from input do
8: s := GetNumber()
9: if s < p then

10: sample packet pkt to output
11: end if
12: end while
13: end procedure

Figure 3.3: Bernoulli sampling algorithm.

With Bernoulli sampling algorithm consecutive or nearby packets can be
sampled more frequently than with, e.g., sFlow sampling. This is because the

58 sFlow-based Link Dimensioning

former does not have a counter or variable that sets a limit between two samples
(i.e., a kind of sampling range). Moreover, specially in the context of link
dimensioning where traffic fluctuations are very important, sampled data with
Bernoulli might become misleading since there is a chance that none of the
packets constituting a traffic burst are sampled. This problem is later studied
in the experiments of Section 3.5.

3.3.2 n-in-N Sampling

In n-in-N sampling, also described in [119], the stream of observed packets is
divided in non-overlapping windows of N packets, and from each window n
packets are randomly sampled. This random selection helps to avoid sampling
packets that belong to periodic traffic patterns, which is the drawback of the
systematic sampling. Despite being more complex than Bernoulli sampling, n-
in-N sampling is widely used by operators and in traffic measuring tools, such
as NetFlow, because its design prevents more than 2n consecutive packets to be
selected, ultimately avoiding measurement bursts. The sampling range defined
by N also guarantees that packets are sampled during traffic bursts, given that
these bursts are larger than N packets.

Figure 3.4 the pseudocode as implemented by us in this thesis. The range
of indices of size n packets to sample, within the window of size N packets,
is randomly generated (line 3). Although not specified in the pseudocode of
Figure 3.4, the resulting array of n values in line 3 consists of unique values
within the interval [1..N]. The incremental variable c defines an index for every
observed packet (line 13). A packet is sampled if its index matches one in the
defined range (lines 14–15). A new range of indices is defined once the counter
c has reached the same value of the sampling window size N (lines 17–19) and
the whole procedure repeats.

Note that in the experiments presented in Section 3.5 we only consider the
case of n = 1 since this is the most commonly used one. For example, Random
Sampled Netflow only supports 1-in-N sampling [27].

3.4 Estimating Traffic Variance

Traffic mean rate and traffic variance are the two parameters needed by the
dimensioning formula used in our work (formula introduced in Section 1.4).
From the original proposal of this formula, in [109], traffic mean ρ and the
traffic variance υ(T) at the chosen timescale T are easily obtained from complete
traffic captures, i.e., uninterrupted packet capturing. In order to apply the link
dimensioning formula to sampled data, however, traffic mean and variance need
to be estimated.

3.4. ESTIMATING TRAFFIC VARIANCE 59

in: window size N
in: number of samples n
in: input stream of packets seen by the monitoring point
out: output stream of sampled packets

1: function GetNumbers()
2: for i = 1 → n do
3: a[i] := randomNatural(1..N) // unique values
4: end for
5: return a
6: end function
7:

8: procedure ninNSampling(input,output)
9: seed random number generator

10: s := getNumbers()
11: c := 0
12: while packet pkt available from input do
13: c := c+ 1
14: if c in array s then
15: sample packet pkt to output
16: end if
17: if c = N then
18: s := getNumbers()
19: c := 0
20: end if
21: end while
22: end procedure

Figure 3.4: n-in-N sampling algorithm.

Considering sampled data now, let r be the ratio between the total number
of monitored packets and the number of sampled packets (i.e., the inverse of
the sampling rate). Let ρ� be the mean traffic rate of the sampled traffic and let
A�

i(T) be the amount of sampled traffic (in bytes) observed in time interval i of
length T . The original amount of traffic Ai(T) in that interval can be estimated
by

Ai,est(T) = r ·A�
i(T) . (3.1)

Hence, the original mean traffic can be estimated by

ρest =
r

nT

n�

i=1

A�
i(T) . (3.2)

60 sFlow-based Link Dimensioning

Similarly, a (naive) estimation of the original variance can be obtained by

υest(T) =
r2

n− 1

n�

i=1

(A�
i(T)− ρ�T)2 . (3.3)

The drawback of such simplistic approach is that, while ρest is an unbiased
estimator of the mean traffic rate ρ, the traffic variance may be overestimated
by υest(T) especially for small T and large r. That is because the additional
variance introduced by the sampling process is not taken into account. In the
following we propose better estimators for the traffic variance according to the
sampling algorithm used.

3.4.1 Variance Estimation with Bernoulli Sampling

Without sampling, the number of bytes Ai in interval i is

Ai =
Pi�

j=1

Si,j , (3.4)

where Pi is the number of packets in interval i and Si,j is the size of the jth
packet in the interval. If we assume that Pi are i.i.d. (independent and identi-
cally distributed) like a random variable P , Si,j are i.i.d. like a random variable
S, and P and S are independent, well-known results for random sums can be
applied and it holds

ρ =
1

T
E[P]E[S] , (3.5)

υ(T) = E[P]V ar[S] + E[S]2V ar[P] . (3.6)

These two equations can also be used in the case of Bernoulli sampling. We
“simulate” Bernoulli sampling with sampling probability p by randomly setting
the size of some packets to zero. The size of a sampled packet becomes

S�
i,j =

�
0, with probability 1− p
Si,j , with probability p .

Replacing S by S� in Equation (3.6) (the complete derivation can be found in
the appendix) yields the variance estimation

υbern(T) = υest(T)− (r − 1)E[P]E[S2] , (3.7)

where r = 1/p, υest(T) is the naive estimation from Equation (3.3), E[P] is
the average number of packets per time interval before sampling, and E[S2] is

3.5. EXPERIMENTAL RESULTS 61

the second moment of the packet size before sampling. E[P] can be estimated
by multiplying the (measured) average number of sampled packets per time
interval by r. E[S2] can be estimated directly from the sizes of the sampled
packets since the sampled packets have the same size distribution as the non-
sampled packets according to our assumptions. Alternatively, traffic models
could be used to obtain E[S2]. For example, assuming a packet size uniformly
distributed between 40 and 1500 bytes, we would have

E[S2] =
1

12
(1500− 40)2 +

1

4
(1500− 40)2 . (3.8)

3.4.2 Variance Estimation with 1-in-N and sFlow Sam-
pling

A mathematical treatment of 1-in-N sampling is much more complex than for
Bernoulli sampling. The sampling window of N packets can stretch over several
intervals T , making the sampled traffic A�

i(T) and A�
i+1

(T) in adjacent time
intervals dependent. Similar difficulties arise for sFlow sampling. Hence, we
simplify the problem and assume that 1/N of the packets of each interval are
sampled. Furthermore, we assume again that the numbers of packets per interval
in the original traffic stream are i.i.d. like P and packet sizes are i.i.d. like S,
and P and S are independent. Under these assumption, the number of sampled
packets P �

i in time interval i is P �
i = Pi/r with r = N (we ignore the problem

that Pi/r might not be a natural number). Replacing P by P/r in Eq. (3.6),
we obtain the variance estimation

υN (T) = υest(T)− (r − 1)E[P]V ar[S] , (3.9)

where E[P] is the average number of packets per time interval before sampling,
and V ar[S] is the variance of the packet size before sampling. Again, E[P]
can be estimated from the number of sampled packets and E[S2] can be es-
timated, and hence V ar[S], directly from the sizes of the sampled packets or,
alternatively, from traffic models. For example, assuming that packet sizes are
uniformly distributed between 40 and 1500 bytes, we would obtain

V ar[S] =
1

12
(1500− 40)2 . (3.10)

3.5 Experimental Results

In this section we assess the use of the sampled data for link dimensioning
purposes. We also validate our proposed formulas for estimating traffic variance
out of sampled packets.

62 sFlow-based Link Dimensioning

The content of this section is organized as follows. In Section 3.5.1 we set
out the approach we use to validate the results obtained for estimations of
required capacity using the dimensioning formula from Section 1.4 and sampled
packets obtained from the different sampling algorithms earlier presented in
this chapter. The metrics introduced in this section are later used to validate
results from other proposed procedures in Chapters 4 and 5. In Section 3.5.2
we demonstrate the impact of sampling on Gaussianity of traffic, which is an
important requirement of the adopted dimensioning formula. In Section 3.5.3
we compare and discuss results on the estimation of required capacity for each
one of the considered sampling strategies and, in Section 3.5.4 we present the
results of an extensive validation of using sampled data for link dimensioning.
The validation in this section comprises all traces of our dataset.

3.5.1 Approach

In our experiments, we sampled all traces from our dataset (introduced in Sec-
tion 2.3. We used the three sampling algorithms previously described in this
chapter, namely, sFlow, Bernoulli and n-in-N sampling. The sampling rates we
applied were 1:10, 1:100 and 1:1000. The last one, however is not applicable to
many traces of our dataset since the total traffic of some locations comprises
only a few thousands of packets (see Section 2.3.2). The resulting problems with
low sampling rates are shown in the next sections.

In a first moment, we assess the Gaussianity fit of sampled traffic. This is
important due to the assumptions on which the link dimensioning formula in
Equation (1.2) from [109] builds upon. That is, if after sampling the Gaussian
character of traffic is diminished, we should expect a negative impact on the ac-
curacy of the estimations of required capacity. In a second moment, we quantify
the accuracy of the link dimensioning using sampled data. Since excessive over-
estimation of required capacity is as undesired as underestimation, in a third
moment, we also quantify the overshooting of estimations from sampled data.
The approaches for addressing each one of these three aspects are given next.

Assessing Gaussianity of Sampled Traffic

To assess the Gaussian fit of traffic traces we use the exact same procedure as
described in Section 2.4.2. For each sampled trace from our dataset we calculate
its respective Gaussianity goodness of fit γ (linear correlation coefficient from
Equation (2.2)).

3.5. EXPERIMENTAL RESULTS 63

Quantifying Underestimation of Required Capacity

To validate whether the link dimensioning procedure using sampled data is suc-
cessful, we compare the resulted estimation of required capacity C(T, ε) with
an empirical one computed from the complete traces (i.e., not sampled traces).
The empirical estimation of required capacity is the 99th-percentile of the em-
pirical CDF distribution of the throughput. This value represents the minimum
capacity that should be allocated so that in only a predefined amount of time
intervals of size T (i.e., represented by ε set in the link dimensioning formula)
the throughput will be above the required capacity C(T, ε). The empirical esti-
mation is defined as

Cemp(T, ε) := min {C : #{Ai | Ai > CT}/n ≤ ε} , (3.11)

where A1, . . . , An are the empirical traffic aggregates on timescale T and ε is the
bandwidth exceedance probability set in the dimensioning formula. Addition-
ally, to verify the accuracy of an estimated capacity C, we calculate the amount
of measured intervals in which the traffic aggregate Ai exceeds C by

ε̂ := #{Ai | Ai > CT}/n . (3.12)

Clearly, if ε̂ ≤ ε the procedure did not underestimate the required capacity.
Note that ε̂ ≤ ε is, by definition, equivalent to C(T, ε) ≥ Cemp(T, ε). In order
to comply with previous work of [96, 109, 112], in the following experiments we
set ε = 0.01 (i.e., 1%) and T ranging from 1ms to 1s.

Quantifying Overestimation of Required Capacity

Excessive overestimation of the required capacity is as much undesired as its
underestimation. That’s because overestimation may result in, for example,
waste of link resources that could potentially be reallocated to other purposes.
Therefore, we are also interested in quantifying the overshooting of the estima-
tion of required capacity C(T, ε). To do so, we calculate the relative error, in
percentage, for any T and ε, between the estimation of required capacity and
the empirical value for the same trace, which is given by

RE =
C − Cemp

Cemp
· 100% , (3.13)

where C is the estimated required capacity obtained using the dimensioning
formula applied to either complete or sampled traces.

64 sFlow-based Link Dimensioning

3.5.2 Traffic Gaussianity

The link dimensioning approach in [109], from which we borrow the dimen-
sioning formula of Equation (1.2), builds upon the assumption that traffic is
Gaussian distributed. That’s why it is important to first check whether sam-
pled traffic remains Gaussian before estimating the required capacity. Since only
a fraction of the real traffic remains after sampling, Gaussian character of traffic
might be distorted. That is, after sampling what was before good Gaussian
traffic might become bad, and vice versa. As a consequence of bad Gaussianity,
the resulting estimations of required capacity become unpredictable. Not only
underestimation might be a result of bad Gaussianity, but also excessive over-
estimation. For the Gaussianity assessment in this section, we follow the same
approach as described in Section 2.4.2.

 140

 170

 200

 230

 260

 290

 320

 140 170 200 230 260 290 320

o
rd

e
re

d
 s

a
m

p
le

N(ρT,υ(T))

(a) Not sampled

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

o
rd

e
re

d
 s

a
m

p
le

N(ρT,υ(T))

(b) Sampled 1:1000

Figure 3.5: Q-Q plots at T = 100ms for an example trace before and after
sampled 1:1000.

For matters of illustration, in Figure 3.5 we first show the Q-Q plot at
T = 100ms for an arbitrarily selected trace from our dataset before and after
sampled 1:1000. As one can see in Figure 3.5a, traffic of the example trace is
likely to have a good Gaussian fit, since only few points fall out of the diagonal
line. However, when sampled 1:1000 using 1-in-N sampling, we can observed
many deviations from the diagonal line and, therefore, Gaussianity characteristic
of the traffic seems to be lost. This is an extreme example where we show that
a very low sampling rate may have major impact on the traffic characteristics
and, consequently, may lead to inaccurate estimations of required capacity. It

3.5. EXPERIMENTAL RESULTS 65

is also important to know that the impact of sampling on traffic Gaussianity fit
is aggravated at shorter timescales.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 0.6 0.7 0.8 0.9 1

F
(γ

)

γ

A
B
C
D
E
F

(a) Not sampled

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 0.6 0.7 0.8 0.9 1

F
(γ

)

γ

A
B
C
D
E
F

(b) Sampled 1:1000

Figure 3.6: CDF of γ at T = 100ms for all traces per location.

The main take away of the Gaussianity assessment in this section is that
when using a proper sampling rate (i.e., sampling rate that takes into consid-
eration the volume of traffic in the monitored link), Gaussianity characteristics
of traffic tend to remain unchanged or be meaninglessly affected. In fact, at
T = 100ms around 70% of traces in our dataset have good Gaussian fit with
an overall average γ of 0.9135, and when these are sampled 1:10 using 1-in-N
algorithm, the average γ becomes 0.9164 and around 71% of all traces have
γ ≥ 0.9.

To quantify the loss of such characteristic for all traces in our dataset after
sampled, we calculate the Gaussianity goodness of fit γ (see Equation (2.2)) for
each trace individually. Figure 3.6 shows the CDF of γ for all traces in our
dataset before and after sampled 1:1000 using 1-in-N sampling. Traces from
locations A and C, that have smaller traffic aggregates, have their Gaussianity
fit severely impacted by using such a low sampling rate. Moreover, by comparing
the plots of Figures 3.6a and 3.6b one can see that the opposite situation also
happens: Gaussianity fit of traces actually increased after sampled. That is,
when an inappropriate sampling rate is chosen crucial traffic characteristics
might be lost, ultimately leading to a misleading Gaussianity fit.

66 sFlow-based Link Dimensioning

3.5.3 Comparing Sampling Strategies

In this section we show the differences on the obtained sampled data from each
of the three implemented sampling algorithms. Figure 3.7 shows, for a single
example trace, the traffic time series (left) and estimations of required capacity
(right) at various T for each sampling algorithm. From analyzing the time series
one can see that the problem of overestimation is likely to happen at shorter
T . Independently of sampling algorithm, at T = 1ms we can see several bogus
traffic peaks in the time series from sampled data (i.e., inexistent bursts in the
actual observed traffic). That is, traffic peaks that are not observed in the time
series from traces without sampling. Note that, for a better visualization, the
time series at T = 1ms in Figure 3.7 only plot one second.

The overestimation of traffic rates within individual time intervals is more
problematic with Bernoulli sampling. That is because with Bernoulli sampling
several consecutive packets, or packets very close in time, might be sampled.
Such packets might end up in the same time interval and, ultimately, the scaling
of traffic within the interval, i.e., by multiplying the sampled traffic by r (see
Equation (3.2)) creates bogus traffic bursts.

This problem is alleviated with 1-in-N sampling due to the definition of sam-
pling windows of N packets. Although with lower probability, overestimation
of traffic average can also happen for 1-in-N sampling once nearby packets are
sampled, e.g., when the last packet of a current window and the first packet
of the next window happen to be sampled. Once again, these sampled packets
might end up in the same time interval, which later creates fake traffic bursts.

Using sFlow sampling results are in between the ones from Bernoulli and
1-in-N sampling strategies. Although also defining a kind of sampling window,
sFlow does not discard the remaining packets in the current window, as done
by the 1-in-N algorithm. That is, if the sampled packet is not the last in the
window, all the remaining packets are considered as part of the packets range for
the next sampling. This makes the behavior of sFlow sampling to be somewhere
in between Bernoulli and 1-in-N sampling.

The problem of bogus traffic bursts disappears at larger timescales. As one
can see in Figure 3.7, at T = 1s time series created from sampled data (indepen-
dently from the concrete sampling technique), using an arbitrarily chosen trace,
faithfully reproduce traffic fluctuations as seen for the non-sampled traces. In
Figure 3.7, time series from sampled data are estimated using Equation (3.1).
These results become clearer when analyzing the estimations of required capac-
ity C(T, ε) for various T and sampling rates (right plots of Figure 3.7). It is
clear that, for the example trace used in these figures, which is the same for
the three algorithms, sampling rates of 1:100 are too low and, hence, they re-
sult in excessive overestimation of the required capacity at shorter timescales.

3.5. EXPERIMENTAL RESULTS 67

 0

 0.5

 1

 1.5

 2

1 2

th
ro

u
g
h
p
u
t
(G

b
/s

)

p=10% w/o samp T=1ms

 0

 0.2

 0.4

 0.6

 0.8

 1 101 201 301 401 501 601 701 801 901

time (s)

p=10% w/o samp T=1s

 0.5

 0.75

 1

 1.25

 1.5

 1.75

 2

 2.25

0.
00

1

0.
00

5
0.

01

0.
02

5
0.

05 0.
1

0.
5 1

th
ro

u
g
h
p
u
t
(G

b
/s

)

timescale (s)

Cemp(T,ε)

C(T,ε)

Cp=10%(T,ε)

Cp=1%(T,ε)

(a) Bernoulli sampling

 0

 0.5

 1

 1.5

1 2

th
ro

u
g
h
p
u
t
(G

b
/s

)

1:10 w/o samp T=1ms

 0

 0.2

 0.4

 0.6

 0.8

 1 101 201 301 401 501 601 701 801 901

time (s)

1:10 w/o samp T=1s

 0.5

 0.75

 1

 1.25

 1.5

 1.75

 2

0.
00

1

0.
00

5
0.

01

0.
02

5
0.

05 0.
1

0.
5 1

th
ro

u
g
h
p
u
t
(G

b
/s

)

timescale (s)

Cemp(T,ε)

C(T,ε)

C1:10(T,ε)

C1:100(T,ε)

(b) 1-in-N sampling

 0

 0.5

 1

 1.5

1 2

th
ro

u
g
h
p
u
t
(G

b
/s

)

1:10 w/o samp T=1ms

 0

 0.2

 0.4

 0.6

 0.8

 1 101 201 301 401 501 601 701 801 901

time (s)

1:10 w/o samp T=1s

 0.5

 0.75

 1

 1.25

 1.5

 1.75

 2

 2.25

0.
00

1

0.
00

5
0.

01

0.
02

5
0.

05 0.
1

0.
5 1

th
ro

u
g
h
p
u
t
(G

b
/s

)

timescale (s)

Cemp(T,ε)

C(T,ε)
C1:10(T,ε)
C1:100(T,ε)

(c) sFlow sampling

Figure 3.7: Traffic time series (left) and estimations of required capacity (right)
for all sampling algorithms and using an example trace from A. For the sake of
clarity, at T = 1ms only one second is shown in the time series.

68 sFlow-based Link Dimensioning

Nonetheless, the difference of final results of C(T, ε) between the three sampling
techniques is not significant. Note that C(T, ε) in these plots is for estimations
using the complete trace and when using the sampled data the legend specifies
the sampling rate.

 0

 10

 20

 30

 40

 50

 60

 70

0.001 0.005 0.01 0.025 0.05 0.1 0.5 1

va
ri
a

n
ce

 (
G

b
)

timescale

υ(T)
Bernoulli
1-in-N
sFlow

(a) Trace from A

 0

 5

 10

 15

 20

 25

 30

 35

 40

0.001 0.005 0.01 0.025 0.05 0.1 0.5 1

va
ri
a

n
ce

 (
G

b
)

timescale

υ(T)
Bernoulli
1-in-N
sFlow

(b) Trace from F

Figure 3.8: Difference between traffic variance calculated from 10 runs of sam-
pling for each algorithm with trace sampled 1:10.

This small difference between the results obtained for each sampling ap-
proach remains constant for other traces and for several runs of sampling. Fig-
ure 3.8 shows the average traffic variance calculated from 10 runs of sampling
for each algorithm always using the same example trace. For matters of com-
parison, the actual traffic variance υ(T) of the example traces is also plotted.
Although very small and difficult to see, the standard deviation is plotted as
error bars in the plots of this figure. For both example traces, at any T or
sampling algorithm, the standard deviation is smaller than 1% of the average
variance. This confirms that, even with the random nature of the sampling
algorithms, running them many times yields very close results. Concerning the
traffic variance, the difference between the three sampling algorithms is larger
at T = 1ms, although still not very significant. At any other T this difference is
negligible or inexistent. These differences are also in line with the estimations
C(T, ε) presented in the right plots of Figure 3.7.

Given the small difference between results from different sampling algo-
rithms, for simplicity in the next section, the overall assessment of the impact
of packet sampling on link dimensioning is done using only 1-in-N sampling.
In addition, due to the very small difference between variances obtained from

3.5. EXPERIMENTAL RESULTS 69

10 runs of sampling, results presented in the next section are obtained from a
single run of sampling per trace in our dataset.

3.5.4 Overall Results

In this section we present results of an extensive validation of the use of sampled
data for link dimensioning. To do so, we sampled all traces in our measurements
dataset using 1-in-N .

Even using the adapted variance formula from Equation (3.9), conservative
C(T, ε) due to overshooting of the traffic variance might be a problem at smaller
timescales and lower sampling rates. Figure 3.9 clearly shows this problem. This
figure shows the average and standard deviation (error bars) of ε̂ at various T
and sampling rates. It is important to recapitulate that ε̂, as defined in Equa-
tion (3.12), is the fraction of measured intervals of size T in which actual traffic
rates are higher than the estimated C(T, ε). By setting ε = 1% in the dimen-
sioning formula of Equation (1.2), a successful estimation of required capacity
ultimately yields ε̂ ≤ ε, which is equivalent to C(T, ε) ≥ Cemp(T, ε).

As shown in Figure 3.9, very conservative results are obtained at small
timescales and low sampling rates and they might confront with the intelli-
gent overestimation premiss. For example, Figure 3.9c show that at T = 1ms
the average and the standard deviation of ε̂ for all locations is near to or equals
zero. That is, Cemp(T, ε) was never underestimated. In such cases one should
suspect that overestimation might have been too high (as further demonstrated
in section 3.5.5). Having in mind that excessive overestimation might happen,
from the results in Figure 3.9 one can still argue that estimations from sam-
pled data are close to the ones obtained from complete traces (i.e., without
sampling). Therefore, from these results we can conclude that packet sampling
can be used for link dimensioning purposes, provided that the sampling rate is
wisely chosen, taking into consideration the volume of traffic in the link.

For matters of comparison, Figure 3.10 shows the average and the stan-
dard deviation of ε̂ for all traces when estimating the required capacity C(T, ε)
using the traffic variance υest(T) from Equation (3.3), obtained by simply scal-
ing the variance from sampled data by r2. Given that the additional variance
introduced by the sampling process is not taken into consideration, the naive
estimation of υest(T) results in excessive overestimation of the required capac-
ity, independently of sampling rate or timescale. Once again, overestimation
does not necessarily mean success, but rather the obtained C(T, ε) might be
way higher than the actual needed Cemp(T, ε) for the given traffic aggregate.

70 sFlow-based Link Dimensioning

 0

 0.01

 0.02

 0.03

 0.04

0.001 0.01 0.1 1

ε

timescale (s)

A
B

C
D

E
F

ˆ

(a) Without sampling

 0

 0.01

 0.02

 0.03

 0.04

0.001 0.01 0.1 1

ε

timescale (s)

A
B

C
D

E
F

ˆ

(b) Sampling 1:10 using 1-in-N algorithm

 0

 0.01

 0.02

 0.03

 0.04

0.001 0.01 0.1 1

ε

timescale (s)

A
B

C
D

E
F

ˆ

(c) Sampling 1:100 using 1-in-N algorithm

Figure 3.9: Average and standard deviation (error bars) of ε̂ at various T .

3.5. EXPERIMENTAL RESULTS 71

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

0.01 1

ε

timescale (s)

A
B
C

D
E
F

ˆ

(a) Sampled 1:10

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

0.01 1

ε
timescale (s)

A
B
C

D
E
F

ˆ

(b) Sampled 1:100

Figure 3.10: Average and standard deviation (error bars) of ε̂ at various T when
using υest(T) from Equation (3.3) to estimate traffic variance from sampled data.

3.5.5 Quantifying the Overestimation

Aiming at an intelligent link capacity provisioning, it is important to also quan-
tify how much the estimated required capacity C(T, ε) overestimates the actual
required capacity Cemp(T, ε). The relative error RE, given by Equation (3.13),
quantifies the difference between the two mentioned estimations. Figure 3.11
shows the obtained RE for all traces sampled 1:10. One can see that, at
T = 10ms, around 78% of all traces had under or overestimation within rea-
sonable bounds, i.e., RE = ±15%, and at T = 1s this value is around 85%. Ap-
proximately 65% and 74% of all traces are within a boundary of RE = ±10%
at T = 10ms and T = 1s, respectively. The worst cases are few traces from A
for which RE was up to ±50%.

Figure 3.12 shows the relative error RE for all traces sampled 1:100. While
RE at T = 1s does not differs much from when traces are sampled 1:10, the RE
obtained at T = 10ms demonstrates the problems arising from a combination
of short T and low sampling rates. While for sampling 1:10 at T = 10ms most
traces had RE = ±15%, for traces sampled 1:100 this range increases to−10% ≤
RE ≤ 50%. The worst cases are some traces from location D and again few
traces from location A for which RE was up to 130%.

One important take away is that the combination of short timescale with in-
appropriate sampling rate seems to not result in underestimation. These results,
specially those in Figure 3.12a, support the statements regarding the problem of
excessive overestimation made in the previous section and showed in Figure 3.9.

72 sFlow-based Link Dimensioning

-50

-40

-30

-20

-10

 0

 10

 20

 30

 40

 50

 0 20 40 60 80 100

R
E

 (
%

)

ordered traces (%)

A
B
C

D
E
F

(a) T = 10ms

-50

-40

-30

-20

-10

 0

 10

 20

 30

 40

 50

 0 20 40 60 80 100

R
E

 (
%

)

ordered traces (%)

A
B
C

D
E
F

(b) T = 1s

Figure 3.11: RE for all traces per location. Traces sampled 1:10 using 1-in-N
sampling.

-50

-25

 0

 25

 50

 75

 100

 125

 150

 0 20 40 60 80 100

R
E

 (
%

)

ordered traces (%)

A
B
C

D
E
F

(a) T = 10ms

-50

-40

-30

-20

-10

 0

 10

 20

 30

 40

 50

 0 20 40 60 80 100

R
E

 (
%

)

ordered traces (%)

A
B
C

D
E
F

(b) T = 1s

Figure 3.12: RE for all traces per location. Traces sampled 1:100 using 1-in-N
sampling. Note the different scale of y-axis for figure (a).

3.6. IMPACT OF THE SFLOW EXPORTING PROCESS ON
LINK DIMENSIONING 73

3.6 Impact of the sFlow Exporting Process on
Link Dimensioning

In the previous section we presented the results on how sampled data can impact
the accuracy of the link dimensioning procedure. Considering a real networking
scenario in which the traffic is monitored using the sFlow tool, introduced in the
beginning of this chapter, the exporting process may also add some challenges
to the link dimensioning problem. That is because many sampled packets can
be exported in a single sFlow datagram and, hence, their individual timestamps
are lost. We have implemented a discrete simulator of sFlow, containing only
the functionalities needed for this study, and in this section we assess the impact
of the sFlow exporting process (see Section 3.2.2) on link dimensioning using
the datasets of location B and C.

3.6.1 Implementation Assumptions

For the specific case of link dimensioning in this thesis, we are interested in
the whole traffic and, therefore, all observed packets undergo sampling. That
is, our packet filtering rule is defined as “accept all”. Aiming at simplicity we
have implemented a sFlow exporter focusing on evaluating the effects of the
loss of packets timestamps on link dimensioning. Therefore, we make a few
assumptions and abstractions: (i) we assume the data analysis at the collector
to solely consist of the link dimensioning procedure described and assessed in
the previous sections; (ii) sFlow agent and collector are located in the same
machine and, therefore, sFlow datagrams do not need to experience network
transmission delays; and (iii) sFlow datagrams are simplified to only carry the
headers of sampled packets. Note that, considering the characteristics we are
interested in, none of above mentioned decisions and assumptions invalidates our
experimental implementation of sFlow when compared to a commercial one. It
is also important to mention that we do not consider datagram loss due to,
for example, packet drops that may happen in congested networks or because
the agent’s jobs run with a low priority on the exporting router or switch.
Furthermore, all metrics used in the following analysis were already introduced
in Section 3.5.1.

3.6.2 Exporting Conditions

In the following experiments we consider two conditions for exporting sampled
data from the sFlow agent to the collector. In the first condition E1, packets
are exported individually and as soon as they are sampled. This case aims at
simulating the optimal scenario for link dimensioning, given that all sampled

74 sFlow-based Link Dimensioning

packets will have an individual and chronologically ordered timestamp. Clearly,
for a real deployment this condition has the disadvantage of excessive traffic
between agent and collector, specially in a distributed monitoring environment.
Note that E1 is the same condition adopted in the experiments of the previ-
ous section, where the goal was to validate the sampling algorithms only. The
second condition E2 implements the original sFlow operation as defined in [95],
and described in Section 3.2.2. In E2 the sampled packets are exported when
the maximum buffer size is reached (i.e., a full sFlow datagram), or when the
oldest sampled packet in the buffer reaches the maximum waiting time of 1 sec-
ond. Considering a capture size of 128 bytes, and a maximum datagram size of
1500 bytes, the agent’s buffer is full when 10 packets are sampled. Additionally,
in the following experiments we vary the capture size.

3.6.3 Experimental Results

Figure 3.13 shows several traffic time series an arbitrarily chosen trace from
location B, created from data monitored under various circumstances. Note that
although our traces have a duration of 15 minutes, since plots of Figure 3.13
are for T = 1ms, for visualization reasons only one second of the time series
is plotted (the same second for all plots though). From these plots one can
clearly see the challenges brought to link dimensioning from the sampling and
exporting processes. Figure 3.13a shows the time series of the complete data
(i.e., not sampled trace). The time series of the sampled data exported using
the condition E1 are shown in Figures 3.13b and 3.13c. Figures 3.13d–3.13f
show the traffic time series of sampled data exported using the condition E2

with the maximum buffer size set to 10 packets (BS = 10).
By comparing the time series of the complete traffic with the ones sampled

1:10 (i.e., Figures 3.13b and 3.13d) one can see that the latter two show a more
bursty behavior. That is, inexistent traffic fluctuations are created possibly
due to clustering of sampled packets into single time intervals (i.e., sampled
packets are too close in time). Visually, at this sampling rate, there is not
much difference between the two exporting conditions and both satisfactorily
approximate the ground-truth observed in the time series of the complete trace.
Nonetheless, time series created with exporting condition E2 are slightly more
bursty than with E1.

The problem of sampling traffic at unreasonable rates, combined with the
problem of loss of individual packet timestamps, becomes evident in the time
series of traces sampled 1:100 and 1:1000. Clearly, these sampling rates are too
low for the volume of traffic in location B. In Figure 3.13c the ON/OFF be-
havior is very strong, and it becomes even worse in Figure 3.13e. In this case,
many time intervals have a throughput of zero and others have their through-

3.6. IMPACT OF THE SFLOW EXPORTING PROCESS ON
LINK DIMENSIONING 75

 0

 0.5

 1

 1.5

 2

 2.5

 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

th
ro

u
g

h
p

u
t

(G
b
/s

)

time (s)

(a) without sampling

 0

 0.5

 1

 1.5

 2

 2.5

 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

th
ro

u
g

h
p

u
t

(G
b
/s

)

time (s)

(b) E1 sampled 1:10

 0

 1

 2

 3

 4

 5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

th
ro

u
g

h
p
u

t
(G

b
/s

)

time (s)

(c) E1 sampled 1:100

 0

 0.5

 1

 1.5

 2

 2.5

 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

th
ro

u
g

h
p
u

t
(G

b
/s

)

time (s)

(d) E2 sampled 1:10

 0

 2

 4

 6

 8

 10

 12

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

th
ro

u
g

h
p

u
t

(G
b

/s
)

time (s)

(e) E2 sampled 1:100

 0

 20

 40

 60

 80

 100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

th
ro

u
g

h
p

u
t

(G
b

/s
)

time (s)

(f) E2 sampled 1:1000

Figure 3.13: Time series at T = 1ms for a trace from location B. For the sake
of clarity, only one second is shown.

put overestimated from the scaling process of ρest in Equation (3.2). That’s
because at least 10 packets, that originally were some milliseconds apart, are
grouped into the same time interval defined by the datagram’s timestamp, while
neighboring time bins are empty, i.e., no datagrams were exported during those
empty time bins. Figure 3.13f shows the time series of the traffic sampled 1:1000
and exported using condition E2. In this case, the same problem is even further

76 sFlow-based Link Dimensioning

Table 3.1: Average ε̂ for traces from B.

r BS
T = 1ms T = 10ms T = 1s

avg ε̂ σ(ε̂) avg ε̂ σ(ε̂) avg ε̂ σ(ε̂)

1:10

2 0.0052 0.0028 0.0072 0.0046 0.0105 0.0072

5 0.0052 0.0028 0.0072 0.0046 0.0105 0.0072

10 0.0024 0.0017 0.0070 0.0045 0.0105 0.0072

20 0.0051 0.0028 0.0072 0.0046 0.0105 0.0072

1:100

2 0.0001 0.0002 0.0010 0.0016 0.0098 0.0073

5 0.0001 0.0002 0.0010 0.0015 0.0098 0.0073

10 0.0000 0.0000 0.0001 0.0002 0.0097 0.0073

20 0.0001 0.0002 0.0010 0.0016 0.0099 0.0075

Table 3.2: Average ε̂ for traces from C.

r BS
T = 1ms T = 10ms T = 1s

avg ε̂ σ(ε̂) avg ε̂ σ(ε̂) avg ε̂ σ(ε̂)

1:10

2 0.0162 0.0052 0.0133 0.0038 0.0114 0.0069

5 0.0162 0.0052 0.0133 0.0038 0.0115 0.0069

10 0.0162 0.0052 0.0133 0.0038 0.0114 0.0069

20 0.0162 0.0052 0.0133 0.0038 0.0115 0.0069

1:100

2 0.0014 0.0012 0.0047 0.0026 0.0093 0.0066

5 0.0014 0.0012 0.0046 0.0025 0.0092 0.0065

10 0.0014 0.0012 0.0047 0.0025 0.0095 0.0066

20 0.0014 0.0012 0.0046 0.0025 0.0093 0.0065

aggravated by the lower sampling rate. Traffic fluctuations at small timescales
cannot be estimated from data sampled at such low rates and, therefore, the
monitored data is useless for link dimensioning.

To quantify the loss on accuracy of link dimensioning, we sample the traces
from the datasets of location B and C at rates 1:10 and 1:100 with E2. Tables 3.1
and 3.2 present the average and standard deviation of ε̂ (see Equation (3.12))
obtained for all traces from locations B and C, respectively. For these experi-
ments we use Equation (3.9) to estimate the variance from sampled data, and
we set ε = 0.01 in the dimensioning formula. The conclusion from these results
is that the buffer size BS (in number of packets) does not seem to play a major
role in the accuracy of the link dimensioning. Once again, ε̂ is actually influ-
enced by the chosen sampling rate and obtained values are comparable to those
in Figure 3.9. For the majority of the cases the link dimensioning is successful,
i.e., ε̂ ≤ ε. However, it is important to remember that one should be careful on

3.7. CONCLUDING REMARKS 77

assuming the link dimensioning was successful when ε̂ equals or is close to zero.
As explained before, in Section 3.5.5, when ε̂ is too low or equals to zero, the
link dimensioning procedure might have excessively overestimated the actual
required capacity. One of the reasons for such overestimation might be very
high traffic peaks that the dimensioning approach tries to account for in the
estimation.

3.7 Concluding Remarks

In this chapter we demonstrated that it is possible to have accurate estima-
tions of required capacity by using sampled measurement data combined with
the dimensioning formula of Equation (1.2). Many traffic measurement tools
implement sampling strategies to cope with the ever increasing traffic rates in
high-speed links and reduce the amount of measured data to process. Aiming
at an easy-to-use approach, we validated the use of sampled data for link di-
mensioning from the widely available tool sFlow. In addition, we also validated
the use of sampled data obtained from two other sampling strategies, namely,
Bernoulli and n-in-N sampling.

We demonstrated that accurate estimations are obtained provided that a
reasonable sampling rate is chosen taking in to consideration the traffic volume
(i.e., load in the monitored link) and the timescale of interest. Inappropriate
sampling rate, i.e., too high for the traffic volume, might result in sampled data
that do not represent the actual observed traffic. Consequently, traffic properties
such as Gaussianity fit might be lost and, ultimately, the link dimensioning
procedure might provide inaccurate estimations. This inaccuracy might come
in the for of either underestimation or excessive overestimation of required link
capacity.

Our results proved that if traffic measurements are done for purposes, among
others, of link dimensioning, it is not enough to base the decision on what
sampling rate to use solely on the capacity of the monitored link3. Instead,
one should consider the actual traffic volume and the timescale of interest for
link dimensioning. Figure 3.14 shows the sampling rates that were applied
to traces from our dataset that had required capacity successfully estimated
at timescales from 1ms to 1s. That is, this figure plots the highest sampling
rate for each trace that provided enough sampled data to successfully estimate
required capacity at different timescales. Notice that in this figure each dot is
a trace, and traces are the same for each timescale. Traces do not change in
position on y-axis (which is trace’s throughput), but they might change in color
for different values of timescale on x-axis. In addition, there is no distinction

3http://blog.sflow.com/2009/06/sampling-rates.html

78 sFlow-based Link Dimensioning

 0

 150

 300

 450

 600

 750

 900

 1050

 1200

 1350

 1500

 1650

0.001 0.01 0.1 1

th
ro

u
g

h
p

u
t
(M

b
/s

)

timescale

< 1:10
1:10

1:100
1:500

1:1000

Figure 3.14: Relationship between sampling rate, timescale and traffic volume,
using 1-in-N sampling.

between traces’ locations in this figure. As expected, Figure 3.14 shows that
lower sampling rates predominate at smaller timescales and higher sampling
rates predominate at higher timescales.

One clear example in the figure is the trace plotted around 600 Mb/s. For this
trace, data sampled 1:10 was enough to successfully estimate required capacity
at T = 1ms. For the same trace, at T = 10ms, the sampling rate 1:100 provided
enough data to result in correct estimation of required capacity. At T ≥ 100ms,
however, data sampled 1:1000 for this trace was sufficient to obtain correct
estimations. Another important take away from this figure is that many traces
with lower traffic throughput actually needed very low sampling rates, i.e.,
r < 10 at any timescale so that sampled data was enough for correct estimations
of required capacity. In addition, there was no case among traces from our
dataset in that higher sampling rates, i.e., r > 100, provided sufficient data for
our link dimensioning approach to correctly estimate required capacity.

Results shown in Figure 3.14 provide a good guideline for defining which
sampling rate to use. Nonetheless, the definition of a rule of thumb for choosing
which sampling rate to use is not trivial. That’s because besides traffic volume
and timescale, some other traffic characteristics can also play a role in the choice
of the sampling rate. For example, if the actual traffic variance is not high,
i.e., traffic rates are quite constant, higher sampling rates could potentially be
applied even for link dimensioning at smaller timescales. However, this is a
deadlock situation. The fact that the traffic variance is not known justifies
the need for the traffic measurements and for the link dimensioning approaches
proposed in this chapter.

3.7. CONCLUDING REMARKS 79

Another important contribution of this chapter is that we proved that the
usual simplistic approach of scaling the traffic variance from sampled data, i.e.,
by the square of the inverse of the sampling rate, results in an excess of the actual
traffic variance and, ultimately, leads to excessive overestimation of required
capacity. Therefore, we propose and validate approaches to better estimate
traffic variance out of sampled data for each one of the sampling algorithms
studied in this chapter. To better estimate traffic variance from sampled data,
these approaches take into consideration the additional variance added by the
sampling procedure.

Finally, we identified potential threats in the implementation of sFlow to the
link dimensioning procedure. We assessed whether the buffer size in the sFlow
agent and the missing inter-arrival times of sampled packets would impact on
the accuracy of the estimations of required capacity. On the one hand, our
results showed that, for the range of tested values, the buffer size does not
affect the link dimensioning approach. On the other hand, however, we verified
that the lack of individual packet timestamps in the sFlow exporting process
can invalidate the sampled data for link dimensioning purposes. Nonetheless,
higher sampling rates can mitigate these effects.

3.7.1 Practical Considerations for sFlow

Besides the exporting process investigated by us, there are additional technical
questions in commercial implementations of sFlow that might impact on the
quality of the traffic measurements and, consequently, on the accuracy of the
link dimensioning.

sFlow datagrams use UDP as transport layer protocol. According to [95],
UDP is more robust than a connection-oriented protocol for this purpose and
the only effects on the performance of an overloaded system is a slightly increase
in transmission delay and a greater number of packet losses. Although claimed
as insignificant, packet loss might drastically reduce accuracy of operations such
as link dimensioning. From real-world deployments we have experienced very
high numbers of packet loss using the default installation of sFlow in network
devices. This might also be caused by running the sFlow agent jobs with a low
priority on the exporting router or switch. Therefore, we generally advise to
avoid losses of sFlow datagrams as much as possible by giving agent jobs the
right priority and by providing enough residual link capacity between the agents
and the collectors if they are not physically located on the same host.

The sFlow protocol also defines and exports a counter called sample pool .
This counter gives the total number of observed packets before sampling and
it can be used to further determine the actual effective sampling rate. This
information could support potential improvements on the proposed approaches

80 sFlow-based Link Dimensioning

for estimating the traffic variance from sampled data, presented in Section 3.4.
Therefore, there is room for a follow-up research in order to explore how much
this counter can actually contribute to an even better estimation of required
capacity.

Finally, it is important to consider that typically operators simply enable
the sFlow monitoring in their network devices keeping default configurations.
By studying official documents of sFlow-enabled devices4 we found out that the
default settings vary quite a lot from vendor to vendor. For example, sFlow in
Dell and IBM devices has sampling disabled by default (i.e., a sampling rate of
1:1). However, the default sampling rate for sFlow in Brocade devices is 1:2048
and for Cisco devices is 1:4096. For the latter cases, the measured traffic is of
very limited use, if any, for link dimensioning. If the network operator uses the
sampled data for link dimensioning purposes, the default sampling rate should
be verified and changed following the intuitive guideline given in Figure 3.14
and the conclusions enabled by the results from experiments in Section 3.5.

4http://www.sflow.org/products/network.php

3.7. CONCLUDING REMARKS 81

It’s not the strongest or the most intelligent who will survive but those who can

best manage change.

— Charles Darwin

CHAPTER 4

Pure Flow-based Link Dimensioning

Flow-level traffic measurements have become one of the most ubiquitous

technologies in today’s networks, mostly because of the widely available

Cisco’s NetFlow and its variations. Flows provide a summary of the

observed traffic and, hence, are an scalable alternative to onerous plain

packet capturing. Scalability comes, however, at the cost of information

loss: inter-arrival time of packets is abstracted in flows. In particular

to the case of this thesis, the lack of timestamps of individual packets

make it harder to estimate traffic variance, which is an important param-

eters of the dimensioning formula of Equation (1.2). In this chapter we

propose and validate an approach to estimate traffic variance and, ulti-

mately, required link capacity, purely from flows (NetFlow/IPFIX style).

The publication related to this chapter is [45].

Chapter 2:

Measurements

Chapter 3:

sFlow

Chapter 4&5:

NetFlow/IPFIX

Chapter 6:

OpenFlow

Chapter 7:

Conclusions

The organization of this chapter is as follows:

• Section 4.1 gives a background on flow-level traffic measurement,
focusing on NetFlow and IPFIX, and states the contribution of this
chapter.

• Section 4.2 introduces the proposed flow-based approach for link di-
mensioning.

• Section 4.3 validates the proposed approach.

• Section 4.4 concludes this chapter.

84 Pure Flow-based Link Dimensioning

4.1 Background

In this section we provide a brief background on the history of flow-level traf-
fic measurements focusing on NetFlow and IPFIX. Then, we explain the flow
measurement operation. Last, we detail the challenge of using flows for link
dimensioning and state the contribution of this chapter.

4.1.1 NetFlow & IPFIX Facts and Figures

One can find different views on the relationship between NetFlow and IPFIX in
the literature. It is not a goal of this thesis to take a position in this discussion.
Nonetheless, in this section we briefly present the viewpoint of two respected
researchers/engineers actively involved in both NetFlow and IPFIX.

The first point of view comes from an interview1 with Benoit Claise, a Cisco
Distinguished Engineer and IETF area director for the operations and manage-
ment, during the IETF 87 meeting. According to Claise, the history of NetFlow
starts in the mid 90’s when it was not only a monitoring tool, but its main
application was actually as a switching path. It slowly gained popularity as a
monitoring tool because operators would resort to measurements from NetFlow
when facing problems in their networks. Nowadays the switching path has been
replaced with more modern technologies for that specific purpose, such as the
Cisco Express Forwarding [24], and NetFlow has focused on traffic measurement.

There are many version of NetFlow export protocol. Among them the most
famous are certainly NetFlow v5 [28] and v9 [32], which nowadays are the two
available versions for Cisco’s customers. NetFlow v2 to v4 are Cisco’s internal
versions and they have never been released. NetFlow v6 was developed to attend
the particular needs of a specific customer and are not supported by Cisco’s flow
collector. NetFlow v8 [25] implements flow aggregation for information present
in NetFlow v5, typically aggregation per IP prefix. Yet according to Claise,
NetFlow v5 is the most common version available in Cisco devices and it is still
supported by Cisco. Some of the major differences between NetFlow v5 and v9
is the flexibility on the flow definition, enabled by the Flexible NetFlow tech-
nology [30], and the possibility of measuring IPv6 traffic or other technologies
such as MPLS.

To some, including Claise, IPFIX [34, 35], standard within the IP Flow
Information Export (ipfix) WG2 can be also defined as NetFlow v10. Another
viewpoint on the NetFlow vs. IPFIX discussion is given by Brian Trammell,
a researcher at ETH Zurich and an active contributor at several IETF groups,

1https://www.youtube.com/watch?v=w61IZ6kYWAQ. Accessed on Jun. 2014.
2http://datatracker.ietf.org/wg/ipfix/. Accessed on Jun. 2014.

4.1. BACKGROUND 85

in his interview3 also during IRTF 87 meeting. Trammel defines NetFlow as
a set of technologies, such as metering processes and export protocol, under
the umbrella of a Cisco product, while IPFIX is more focused on the export
protocol.

Nonetheless, as mentioned above, it is not our goal to position ourselves on
whether and how NetFlow and IPFIX relate. In this thesis we are particularly
interested in NetFlow v5 simply by the fact that this protocol already provides
the information we need for link dimensioning purposes. In addition, the same
information we use from NetFlow v5 can also be obtained from NetFlow v9
and IPFIX protocols. Therefore, the link dimensioning approach proposed in
this chapter and the one proposed in Chapter 5 are referred to as flow-based
approaches, which means that they make use of NetFlow/IPFIX style flows.

Besides proprietary implementations of NetFlow available on Cisco devices,
one can find many open source and independent implementations that do mea-
sure, export and process NetFlow/IPFIX-like style flows. A non-exhaustive list
of implementations is given in the following:

• YAF (Yet Another Flowmeter) [19, 61] is a flowmeter originally intended
to both track the developments and become a reference implementation
of IPFIX metering and exporting processes. As later explained in Sec-
tion 4.3.1, we use YAF to convert the packet captures from our dataset,
as described in Section 2.3, into NetFlow-like flows.

• nfdump
4 is a set of tools to collect and process NetFlow data. It supports

NetFlow v1, v5, v7, v9 and IPFIX.

• fprobe
5 is a flow exporter that captures traffic and exports NetFlow flows

to a NetFlow collector. It supports NetFlow v1, v5 and v7.

• pflow
6 is a OpenBSD implementation of a kernel interface for NetFlow-

like flow export. It is compatible with NetFlow v5, v9 and IPFIX.

• ipt-netflow
7 (NetFlow iptables module) is a Linux implementation of

a NetFlow exporting module, which also supports NetFlow v5, v9 and
IPFIX.

Besides NetFlow/IPFIX, there are other flow-level traffic monitoring and
measurement technologies. For example, Argus (Audit Record Generation and
Utilization System) [98] is a comprehensive set of tools that capture packets,

3https://www.youtube.com/watch?v=bMF3coSAl0s. Accessed on Jun. 2014.
4http://sourceforge.net/projects/nfdump/. Accessed on Jun. 2014.
5http://sourceforge.net/projects/fprobe/. Accessed on Jun. 2014.
6http://www.openbsd.org/cgi-bin/man.cgi?query=pflow. Accessed on Jun. 2014.
7http://sourceforge.net/projects/ipt-netflow/. Accessed on Jun. 2014.

86 Pure Flow-based Link Dimensioning

generate flows and provide detailed network status reports. Argus defines its
own information model and transport. Besides the traditional flow definition,
as done by NetFlow, Argus enables operators to define flows at other network
layers using different combination of fields. Nonetheless, in this chapter we focus
only on NetFlow, which is undoubtedly the most deployed flow-level solution.

4.1.2 Monitoring Traffic at the Flow Level

This section provides a general explanation on how the monitoring of traffic at
the flow level works. This explanation is based on the requirements for IPFIX as
published in [99]. Before explaining the overall operation of monitoring traffic
at the flow level, it is important to understand two basic concepts, namely flow
and flow records. Their definitions are as follows.

Flow is defined as a set of packets that share common properties passing

an observation point in the network. A commonly used flow definition is

based on the 5-tuple key from NetFlow v5 consisting of source and desti-

nation IP addresses, source and destination ports and transport protocol.

Flow record is defined as a report that contains information about a

specific flow. Besides the flow identification (5-tuple) a flow record also

contains properties of the flow that were measured during the flow record’s

lifetime in the metering process (e.g., number of bytes and packets). In-

formation of a single flow can be split into multiple flow records.

Figure 4.1 shows the overall operation of monitoring traffic at the flow level.
The observation point is a location in the network where IP packets can be
observed. This can be, for example, one or a set of interfaces of a router, a
single port of a router or even all interfaces of a line card. Using the packets
observed at the observation point as input, the metering process is responsible
for a set of operations such as packet header capture, time-stamping, packet
sampling and classification. From the treated packets, the metering process
generates and maintains flow records. This maintenance consists of, among
others, flow record creation, statistics computation and forwarding flow records
to the exporting process when these have been expired or completed.

A single flow can be exported as many flow records. What defines it are
the timeouts. There are two timeouts, namely active and inactive (or idle)
timeout. The inactive timeout defines the maximum interval between the last
observed packet belonging to the flow and the moment at which the metering
process considers the flow as terminated and the current flow record is sent

4.1. BACKGROUND 87

observation

point

metering,

exporter
collector

packets flow records

NetFlow/IPFIX

Figure 4.1: Flow-level traffic monitoring.

to the exporter. That is, flows with packet inter-arrival times larger than the
inactive timeout are split into multiple flow records by the metering process.
The active timeout tells the metering process the maximum duration of a flow
record before being sent to the exporter, even if its respective flow is still active
(i.e., last observed packet of the flow is within the interval defined by the inactive
timeout). Therefore, flows that last longer than the active timeout are also split
into multiple flow records.

The received flow records at the exporting process are sent to the collector
using the (appropriately) chosen export protocol. Finally, at the collector flow
records are either stored or further processed and forwarded to other applica-
tions.

Reliability of flow-level measurements

An important aspect of measuring traffic at the flow level is the quality of
measured data. In [57] the authors have shown that the flow export process may
introduce artifacts (i.e., measurement errors) in the exported data. They also
show that this problem is found in devices from various vendors. In this chapter
we do not address the quality of the measured flow data. Such study is out of
this thesis’ scope and, therefore, we assume that exported flow data is artifact-
free. Nonetheless, it is important to keep in mind that in real deployments
the proposed link dimensioning approach in this chapter might inherit problems
originally caused by artifacts in the flow export process.

Random Sampled NetFlow

Random Sampled NetFlow [27] allows for the operator to activate sampling on
measuring traffic. The sampling algorithm of Random Sampled NetFlow has
been explained in Section 3.3.2. In real-world deployments, we have observed
cases in which network operators set very low sampling rates even for traffic
rates that do not justify such a choice (e.g., from 1:500 to 1:2048). If sampling
rates are very low, the exported data might lose important information, becom-
ing unusable for link dimensioning (as explained in Chapter 3). We have also
observed real NetFlow deployments in that operators disable packet sampling
for NetFlow measurements. Nevertheless, although sampling is employed in

88 Pure Flow-based Link Dimensioning

many cases, we expect to see in the future that operators start to increase the
sampling rates, or even disable it, in NetFlow-like monitoring systems. That’s
because flow-level measurements are also being extensively used to support se-
curity operations [55, 56] and, for example, in such operations sampled flow
data might result in many false negative problems on attempting to identify
malicious traffic. Therefore, in this chapter we do not consider sampled flow
data. However, on using sampled flow data, one can find valuable information
in the discussion about sampling rates and link dimensioning in Chapter 3.

4.1.3 Challenge & Contribution

Flows can provide more information of the observed traffic than basic SNMP
counters. In addition, flow level monitoring is a scalable alternative to plain and
continuous packet capturing. However, the data aggregation performed by the
flow monitoring comes at the cost of information loss. Typically, a flow record
does not contain information on individual packets, such as the packet arrival
time and the packet size. That is, it is not possible to correctly track traffic
fluctuations from flows. This directly impacts the problem of link dimensioning,
since these are important information to compute essential traffic characteristics,
e.g., the traffic variance required by the adopted dimensioning formula in this
thesis. Therefore, the information loss imposes a challenge on the use of flows
for link dimensioning.

Aiming at overcoming the information loss inherited from flows, and to en-
able their use on link dimensioning, in this chapter we propose a straightforward
approach to estimate traffic variance from flows. This approach is based on the
assumptions that (i) all packets in a flow are uniformly distributed within the
flow duration and (ii) all packets in a flow have constant size. Such assumptions
are clearly not realistic. However, we expect that in the presence of a very large
number of flows, the averaging error introduced by our assumptions will be alle-
viated. In this chapter we validate the proposed approach within the complete
link dimensioning procedure by quantifying the under and overestimations of
required capacity when using flow-level measurements.

It is important to mention that the approach proposed in this chapter aims
at cases in which network operators already possess the technology for flow-level
traffic measurements (e.g., Cisco’s NetFlow). However, since flow data is also
being used for other purposes, changes cannot be made on the operating mea-
surement system on behalf of link dimensioning. Nonetheless, we are aware that,
concerning flow-level measurements, additional implementations with potential
changes in the measurement system, one might be able to solve the problem of
missing information in an easier way. This is discussed in more details at the
end of this chapter.

4.2. FLOW-BASED APPROACH 89

4.2 Flow-based Approach

Considering the problem of loss of crucial information in flows, in the context
of link dimensioning, in this section we describe our proposed approach for
estimating traffic variance from flows and ultimately computing the required
link capacity. The whole approach is quite straightforward and it is presented
in two subsections. The first one describes the overall structure of the proposed
approach. Then, we detail the process for creating traffic time series from flows
(aka flow-level time series) and using them to estimating traffic variance.

4.2.1 Approach Overview

As already mentioned, the approach in this chapter is quite straightforward and
based on general assumptions of traffic. The approach can be divided in three
steps, as showed in Figure 4.2. Operations in the first step are actually related
to the flow-level traffic monitoring. That is, the first step consists of operations
from Figure 4.1, namely, metering and exporting processes. The input flow
records in the second step can be either received directly from the exporting
process or retrieved from the flow collector. It will depend on the architecture
of the implemented system for link dimensioning. The whole link dimensioning
is, however, out of this thesis scope. On having flow records the flow-level time
series are created in the second step, as detailed in the next section. Finally, in
the third section traffic statistics, such as traffic variance, are estimated from
the flow-level time series.

step 1:

flow-level traffic

measurements

step 2:

create flow-level

time series

step 3:

estimate traffic

statisticsflow records time series

Figure 4.2: Flow-based link dimensioning approach.

4.2.2 Creating Flow-level Time Series

In this section we detail the procedure of creating flow-level time series, which is
a sequence of values that represent the link usage (i.e., traffic rate) during the
entire measured period. To create flow-level time series, the only information
needed from the flow records are: the start time s, the end time e and the
number of bytes b. We assume that the bytes belonging to a flow record are
uniformly distributed over the flow record’s duration. This assumption imposes

90 Pure Flow-based Link Dimensioning

another assumption on that packets belonging to a flow record have constant
size defined by the flow record’s number of bytes/number of packets.

Initially, the flow records are placed in a timeline that lasts from s of the
first flow record to e of the last flow record in the measurement period. The
timeline is defined as

TF = {BF,i} , 1 ≤ i ≤ m , (4.1)

where BF,i is the link usage in the time interval ti = [iT, (i+1)T [, and T is the
interval size that defines the granularity for the following computations (i.e.,
timescale). In order to create the flow-level time series, we have to calculate
for each time interval ti the amount of bytes transferred in that interval. Let’s
consider a set of flow records F consisting of n records fi, where 1 ≤ j ≤ n.
The subset of flow records that contribute to the traffic rate in time interval ti
is given by

ki = {fi ∈ F : sj < (i+ 1)T ∧ ej ≥ iT} . (4.2)

For each flow record in ki we calculate the amount of bytes it contributes to
the time interval ti. The sum over all flow records in ki gives the total number
of bytes Si transferred in ti

Si =
�

fj∈ki

max(min((i+ 1)T, ej)−max(iT, sj), 1)

max(ej − sj , 1)
· bj . (4.3)

The above formula accounts for the fact that flows do not necessarily start
or end exactly at the beginning or end of the time interval ti. It considers
the fraction of bytes in relation to the flow record duration within the specific
interval. The max function in the divisor avoids a division by zero when the
flow record’s start time is equal to its end time. This happens when the flow
record consists of, for example, only one packet. The flow-based link usage BF,i

in ti is then given by dividing Si by the size of the chosen timescale

BF,i =
Si

T
. (4.4)

By having the sequence of link utilization for all ti in the measured period,
the flow-level time series is complete. The average traffic rate and the traffic
variance are then calculated in the traditional way by, respectively

ρ =
1

m

m�

i=1

BF,i , (4.5)

and

υ(T) =
1

m− 1

m�

i=1

(Si − ρT)2 . (4.6)

4.3. EXPERIMENTAL RESULTS 91

Finally, the calculated ρ and υ(T) are applied to the link dimensioning for-
mula of Equation (1.2). What is ultimately obtained is the estimation of required
capacity C(T, ε) obtained purely from flow-level traffic measurements. In the
next section we validate the proposed approach using the traffic measurements
from the dataset introduced in Chapter 2.

4.3 Experimental Results

In this section we validate the proposed approach in this chapter. We assess
the accuracy of the link dimensioning approach using traffic statistics computed
from flow-level measurements. Given that our dataset, as presented in Chap-
ter 2, consists entirely of packet captures, we first need to convert those into
flows. This procedure is described in Section 4.3.1.

The analysis and discussion of our results is divided in two parts. The
first part, in Section 4.3.2, consists of a qualitative analysis by means of manual
comparison of the flow-level time series with a“ground-truth”time series created
from the packet-level traces. This analysis aims at identifying situations in which
flow-level time series show a different behavior than the packet-level one, and to
investigate the causes of deviations. The second part, in Section 4.3.3, consists of
a quantitative analysis in which we assess the accuracy of the link dimensioning
procedure when using traffic statistics computed from flow measurements. The
parameters used in the quantitative analysis are the same as the ones introduced
in Section 3.5.1. To recapitulate, these parameters are the obtained exceedance
probability ε̂ to quantify the underestimation of required capacity, as defined
in Equation (3.12), and the relative error RE to quantify the overestimation of
the required capacity, as defined in Equation (3.13).

4.3.1 From Packets to Flows

In order to have flows-level traffic measurements, we converted all packet traces
from our dataset into flows. To do so, we used YAF [19, 61], which works both
online and offline. In an online fashion, YAF captures live stream traffic and
exports flow records. In the offline mode, YAF reads packet captures from trace
files, generates and exports flow records following the specified parameters. In
our case parameters were the active and inactive timeouts. We have used three
combinations of timeouts. That is, from each packet trace we have created three
flow traces. Each flow trace from a single packet trace differs in the amount of
flow records. Clearly, the shorter the timeouts the bigger the amount of flow
records.

The three combinations of timeouts we have defined are presented in Ta-
ble 4.1. Timeout definitions a60i20 and a120i30 are easily found in traffic

92 Pure Flow-based Link Dimensioning

Table 4.1: Flow timeout definitions.

abbr.
timeouts in seconds

active inactive

a5i2 5 2

a60i20 60 20

a120i30 120 30

measurement setups at network operators. The definition with shortest time-
outs a5i2, however, is more difficult to find. That’s because setups with short
timeout values might confront with infrastructure limitations. That is, on the
one hand, short timeouts mean that more measurement traffic will be gener-
ated between the flow exporter and the collector (considering a distributed flow
monitoring system). One the other hand, however, very long inactive timeouts
might create the problem of measurement-related traffic bursts from exporting
process to the collector, due to many flow records expiring at the same time.
Nonetheless, we have defined a5i2 serves as a good comparison parameters in
the next section.

Flow-level Traffic Characteristics

Section 2.3.2 shows the number of packets and average rate of all packet traces
in our dataset. Now, Figure 4.3 shows the flow-level characteristics of our traffic
for each of the timeouts definition.

Figure 4.3a shows the average number of flow records (and the standard de-
viation in error bars) for all traces in our dataset for each defined combination of
timeouts. As expected, considering the link capacity and utilization (presented
in Figure 2.2a), with the a5i2 flow definition traces from D and E generated
two orders of magnitude more flow records than, e.g., traces from A. Another
take away from this figure is that, for any location, the small difference between
the number of flow records for any combination of timeouts indicates that most
of the flows have a duration lower than 5 seconds. For a5i2, we can observe a
slight increase in the number of flows for locations A and C.

Figure 4.3b shows the average number of simultaneously active flow records
per second per trace (and standard deviation in error bars). That is, the average
amount of flow records simultaneously being metered every second for all traces
of each location. Traces from A have an average of 542 active a5i2 flow records
per second and around 1.6k active a120i30 records per second. Traces from D
and E have an average of, respectively, 30.9k and 48.7k active a5i2 flow records
per second, and around 68.8k and 136.9k active a120i30 records per second.

4.3. EXPERIMENTAL RESULTS 93

10-2

10-1

100

101

102

a5i2 a60i20 a120i30

n
u

m
b

e
r

o
f
flo

w
s

(x
1
0

6
)

flow definition

A
B

C
D

E
F

(a) Average, max and min (error bars) num-

ber of flow records for all traces per location

10-2

10-1

100

101

102

103

a5i2 a60i20 a120i30

n
u

m
b

e
r

o
f
a

ct
iv

e
 f
lo

w
s

(x
1
0

3
)

flow definition

A
B

C
D

E
F

(b) Average, max and min (error bars) num-

ber of simultaneously active flow records ev-

ery second per location

Figure 4.3: Flow-level traffic characteristics of all traces in our dataset (note the
difference on scaling of y-axis).

The longer the timeouts the longer flow records take to be exported by the flow
exporter. For example, an inappropriately finished flow (e.g., TCP connection
that was not properly concluded), will remain in the metering process until its
inactive timeout expires. This explains the increasing number of simultaneous
active flows for longer timeouts, as observed in Figure 4.3b. Therefore, although
resulting in a smaller number of flow records to be further processed, longer
timeouts might demand more resources from the measurement device.

4.3.2 Qualitative Analysis

As mentioned before, flow-level time series introduce averaging errors due to
its too optimistic assumption that bytes within flow records are uniformly dis-
tributed. In this section we qualitatively check the problems arising as conse-
quence of this averaging. To do so, we manually compare flow-level and packet-
level traffic time series.

Figure 4.4 illustrates the differences between packet-level and flow-level time
series. This trace has an extreme example that makes it easier to identify av-
eraging problems in flow-level time series. Note that differently of our traces in
the dataset, this example trace is 5-minute long. This makes it easier to observe
traffic fluctuations. In this example, the situation between 5 and 120 seconds
illustrates the problems of averaging when setting long timeouts. During this

94 Pure Flow-based Link Dimensioning

 100

 120

 140

 160

 180

 200

 220

 0 25 50 75 100 125 150 175 200 225 250 275 300

th
ro

u
g

h
p

u
t

(M
b

/s
)

time (s)

packets
a5i2
a120i30

Figure 4.4: Packet-level and flow-level time series at T = 1s of a 5-minute long
trace.

period, most of the traffic volume was generated by a single flow that was re-
ported as a single flow record when using a120i30. As one can see from the
packet-level time series, the traffic increased significantly at around 30 seconds.
That is, the major portion of bytes was transmitted few seconds after the be-
ginning of the flow. Ignoring the actual distribution and assuming uniformity,
our approach averages all the bytes within the entire flow duration.

Comparing the two flow time series, we observe that the a5i2 series closely
follows traffic fluctuations. The reason is that, unlike a120i30, the a5i2 defini-
tion exports long flows as several consecutive and smaller flow records. It means
that the averaging of traffic is limited to intervals of 5 seconds at maximum (i.e.,
the active timeout).

In the time series in Figure 4.4 we can identify many matches and mis-
matches between packet-level and flow-level time series. Particularly, around
250 and 280 seconds we can identify problems in the flow-level time series due
to averaging. However, in some intervals such as around 160 seconds, we can
also see moments that the flow-level time series nicely follow the packet-level
one. These three moments are shown in isolation in Figure 4.5.

In the period zoomed in Figure 4.5a, there is a drop in the traffic rate for a
few seconds. The flow-level time series do not follow this drop because they take
into account bytes of flows that started before and ended after this specific time
bin. As can be seen in the figure, this effect is stronger for larger timeouts. In
the period zoomed in Figure 4.5b the problem of averaging can also be clearly
seen. The situation that resulted in this mismatch is the same that created the
averaging problem observed between 5 and 120 seconds in Figure 4.4. That
is, traffic bursts belong to a flow with non-uniformly distributed bytes. Flow
records defined with shorter timeouts manage to reflect better fluctuations that

4.3. EXPERIMENTAL RESULTS 95

 120

 125

 130

 135

 140

 145

 150

 155

 160

 250 255 260 265 270

th
ro

u
g

h
p

u
t

(M
b

/s
)

time (s)

packets
a5i2
a120i30

(a) Averaging problem

 135

 140

 145

 150

 155

 160

 165

 280 285 290 295 300

th
ro

u
g

h
p

u
t

(M
b

/s
)

time (s)

packets
a5i2
a120i30

(b) Averaging problem

 120

 125

 130

 135

 140

 145

 150

 155

 155 160 165 170 175

th
ro

u
g

h
p

u
t

(M
b

/s
)

time (s)

packets
a5i2
a120i30

(c) Matching

Figure 4.5: Zoomed intervals of the time series from Figure 4.4.

happen within the period of the timeout (in this case 5 seconds). However, with
longer timeouts, a single flow record reports the traffic of the entire flow and, due
to our assumptions, the approach believes all bytes are uniformly distributed
within the flow duration. Consequently, the time series overlooks traffic bursts
that are located in specific intervals within the flow.

Figure 4.5c shows a zoomed interval in which the flow-level time series re-
markably follow the fluctuations occurring at the packet-level. This happens
when flows have a constant traffic rate, i.e., the flow records represent well the
packet-level dynamics. Moreover, this might also happen when flows are short
(including flows consisting of a single packet) and, consequently, they fit into
one time interval.

We expect the averaging problems in flow-level time series to ultimately
impact the obtained estimation of required capacity. In the next section we
quantify this impact by assessing the accuracy of our proposed flow-level link
dimensioning approach.

4.3.3 Quantitative Analysis

In this section we present the results of extensive validation of the proposed link
dimensioning approach. For all traces, after their respective conversion to flow-
level measurements as explained in Section 4.3.1, we have used the approach
described in Section 4.2 to estimate the traffic variance from flows.

96 Pure Flow-based Link Dimensioning

Overall validation

To assess the accuracy of the proposed approach, we quantify the obtained
exceedance probability ε̂ as defined in Equation (3.12).

Recap: The estimation of required capacity is considered successful when

it yields C(T, ε) ≥ Cemp(T, ε), which is by definition the same as ε̂ ≤ ε.

The plots in Figure 4.6 show the average ε̂ obtained for all traces per loca-
tion for the three different flow definitions. For these experiments, we have set
ε = 0.01 (i.e., 1%) in the dimensioning formula of Equation (1.2). Note that the
dashed line at the plots of Figure 4.6 highlight the case of ε̂ = ε. For matters of
comparison, Figure 4.6a shows the results for a packet-based approach, as origi-
nally proposed in [109]. That is, these results were obtained from computations
of required capacity using the packet-level traffic traces.

As one can see, the link dimensioning approach purely based on flows does
not successfully capture traffic fluctuations that happen at shorter timescales.
As a consequence, estimations of required capacity at shorter timescales do not
achieve the desired ε̂ ≤ ε. Only with the flow definition a5i2 the average ε̂
was kept within reasonable bounds for T ≥ 500ms. For the other definitions,
however, accuracy of the estimations was compromised even at T = 1s.

For traces from locations A and C, the averaging introduced by the link
dimensioning is aggravated by the lower amount of flow records per trace, and
estimations result in ε̂ that are much higher than the desired ε. This problem
gets worse with flow records defined with longer timeouts. (Note that in Fig-
ure 4.6d, for flows a120i30, the average ε̂ for traces from location A at T = 100ms
is not even plotted because it is higher than the y-axis upper bound.) However,
for traces from locations B, D and E estimations of required capacity were accu-
rate even at T = 100ms and for any flow definition. The higher number of flow
records per trace in these locations, for any of the considered flow definitions,
as shown in Figure 4.3a, helps to alleviate the impact of the averaging problem
introduced by the proposed link dimensioning approach.

In fact, for traces from these three locations, good accuracy of estimated
required capacity was obtained even at much shorter timescales. The additional
plot in Figure 4.7 shows that the average obtained ε̂ for locations was satisfactory
at timescales as short as T = 25ms. One important remark is that traces from
location D can be divided in two groups: those with higher average rates and
those with lower average rates. In Figure 4.7 only the former ones are plotted,
and they account for half of all traces from D.

Therefore, we can conclude that the proposed approach can provide accurate
estimations of required capacity at timescales as low as 25ms, provided that

4.3. EXPERIMENTAL RESULTS 97

 0

 0.03

 0.06

 0.09

 0.12

 0.15

 0.18

0.1 0.5 1

ε

timescale (s)

A
B

C
D

E
F

ˆ

(a) Packet-based approach

 0

 0.03

 0.06

 0.09

 0.12

 0.15

 0.18

0.1 0.5 1

ε
timescale (s)

A
B

C
D

E
F

ˆ

(b) Flow definition a5i2

 0

 0.03

 0.06

 0.09

 0.12

 0.15

 0.18

0.1 0.5 1

ε

timescale (s)

A
B

C
D

E
F

ˆ

(c) Flow definition a60i20

 0

 0.03

 0.06

 0.09

 0.12

 0.15

 0.18

0.1 0.5 1

ε

timescale (s)

A
B

C
D

E
F

ˆ

(d) Flow definition a120i30

Figure 4.6: Average and standard deviation (error bars) of �̂ at various T .

the measured traffic has a high enough number of flow records (e.g., in our
dataset, location E has an average of around 14M a120i30 -type flows per 15-
minute trace). However, if the monitored link has an average number of flow
records similar to those from the other locations in our dataset, it is likely
that estimations will mostly underestimate the actual required capacity if flow
records are defined with longer timeouts.

98 Pure Flow-based Link Dimensioning

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

0.025 0.05 0.1 0.5 1

ε

timescale (s)

B - a5i2
B - a120i30

D - a5i2
D - a120i30

E - a5i2
E - a120i30

ˆ

Figure 4.7: Average and standard deviation (error bars) of ε̂ at various T for
traces from B, D and E.

Quantifying the underestimation

From the results in Figure 4.6, we learn that the longer the flow timeouts and
the shorter the timescale, the lower the accuracy of the estimations using the
proposed flow-based approach. However, it is also important to understand how
far is the estimated C(T, ε) from the actually required Cemp(T, ε). The plots
of Figures 4.8 and 4.9 show the relative error RE – given by Equation (3.13) –
for T = 500ms and T = 1s, respectively. It is important to remember that in
these plots, the value of RE=0% (highlighted with a dashed line) corresponds
to C(T, ε) = Cemp(T, ε).

Recap: The relative error RE is used to assess how much for more (over-

estimation) or for less (underestimation) the estimated required capacity

C(T, ε) differs from the empirical ground truth Cemp(T, ε).

From the plots in these figures we can see that underestimation is the main
problem with the proposed flow-based approach. On the one hand, in the worst
cases, for locations A and C at T = 500ms, the estimated C(T, ε) is, for few
traces, more than 80% lower than the required Cemp(T, ε). This explains why
in Figure 4.6d the average ε̂ is not plotted within the defined range for y-axis.
The underestimation for these traces, mainly from those from C, is alleviated
at T = 1s. Only few traces from location E had their capacity estimated
around 30% less than the required as defined by the empirical estimation. For
traces from locations B, D and E, on the other hand, underestimation was kept
within reasonable bounds. Even for flows a120i30 the estimated C(T, ε) is at
most about 15% less than the required Cemp(T, ε).

4.4. CONCLUDING REMARKS 99

-80

-60

-40

-20

 0

 20

 40

 60

 0 20 40 60 80 100

R
E

 (
%

)

ordered traces (%)

A
B
C

D
E
F

(a) Flow definition a5i2

-80

-60

-40

-20

 0

 20

 40

 60

 0 20 40 60 80 100

R
E

 (
%

)

ordered traces (%)

A
B
C

D
E
F

(b) Flow definition a60i20

-80

-60

-40

-20

 0

 20

 40

 60

 0 20 40 60 80 100

R
E

 (
%

)

ordered traces (%)

A
B
C

D
E
F

(c) Flow definition a120i30

Figure 4.8: Relative error RE for all traces per location at T = 500ms.

-80

-60

-40

-20

 0

 20

 40

 60

 0 20 40 60 80 100

R
E

 (
%

)

ordered traces (%)

A
B
C

D
E
F

(a) Flow definition a5i2

-80

-60

-40

-20

 0

 20

 40

 60

 0 20 40 60 80 100

R
E

 (
%

)

ordered traces (%)

A
B
C

D
E
F

(b) Flow definition a60i20

-80

-60

-40

-20

 0

 20

 40

 60

 0 20 40 60 80 100

R
E

 (
%

)

ordered traces (%)

A
B
C

D
E
F

(c) Flow definition a120i30

Figure 4.9: Relative error RE for all traces per location at T = 1s.

From the results in Figures 4.8c and 4.9c, for the cases of longer flow time-
outs, the estimations of required capacity obtained from the proposed flow-based
approach can serve as a good baseline estimation. That is, in practice the op-
erator could still need to use a rule of thumb and add a safety margin on top
of the obtained estimation. However, instead of 30% of the average rate, be-
tween 5% and 10% would suffice for most of the traces from our dataset, but
those from A and C. Such margin would help to approximate the estimation of
required capacity to the empirical one, consequently, alleviating the underesti-
mation problem.

4.4 Concluding Remarks

Flows are a scalable alternative to continuous packet capturing for measur-
ing traffic because they provide a summarized overview of the observed traffic.
However, the scalability comes at the cost of inherited information loss. The

100 Pure Flow-based Link Dimensioning

individual timestamps and sizes of observed packets is not recorded. Conse-
quently, the information of how packets and bytes are distributed within the
flow is unknown, which makes it difficult to calculate the traffic variance later
used in the dimensioning formula.

In this chapter we have proposed a link dimensioning approach purely based
on flow-level traffic measurements. This approach is built upon the (unrealistic)
assumption that bytes transferred during the flow are uniformly distributed
within the flow’s duration. Although this assumption is unrealistic, we have
proved that this simplistic approach can lead to accurate estimations of required
capacity relying solely on flows.

The accuracy, however, is conditional on the number of flows that amount to
the measured traffic aggregate and the average duration of these flows. The best
results were achieved for traces from locations B, D and E, whose traces have
an average of between 5 to 14 million flows (defined as a120i30). The worst
results were for locations A and C, whose traces have an average of between 1.6
and 2.4 thousand flows (defined as a120i30).

The definition of timeouts and, respectively, a upper bound for flow dura-
tion, also impacts on the accuracy of estimations. We have demonstrated that,
on the one hand, the shorter the timeouts, the better our procedure reconstructs
short-term traffic fluctuations. On the other hand, longer timeouts aggravate
the averaging introduced by our approach due to the assumption of uniformly
distributed bytes within flows records. We have used three timeouts combina-
tions in our experiments. In addition, we observed that for some locations the
accuracy was not significantly compromised even with longer timescales. For
example, estimations for traces from location E achieved good accuracy using
a120i30 flows. By analyzing Figure 4.3a we can assume that such good accuracy
was possible because most of flows from location E are shorter than 5s. There-
fore, in such cases the definition of longer timeouts does not impact significantly
on the estimation of required capacity.

To summarize, the link dimensioning approach proposed in this chapter is
able to estimate required link capacity for large timescales, e.g., 1s. However,
as long as the measured traffic consists of a “high enough” number of flows, the
proposed approach is able to provide accurate estimations of required capacity
at timescales as low as 25ms. That’s because a high number of flows makes up
for the averaging introduced by our approach. On having “too few” flows, our
assumption (of uniformly distributed bytes within flows) overlooks the traffic
fluctuations at short timescales and, ultimately, leads to inaccurate estimations
mainly at shorter timescales. This problem can be partially palliated by using
shorter timeouts.

Therefore, the pure flow-based link dimensioning approach can be used by
operators targeting QoS for basic user operations, such as web browsing, for

4.4. CONCLUDING REMARKS 101

which estimations at T = 1s suffice. However, if the operator wants to guaran-
tee QoS for more demanding services, such as online video streaming, shorter
timescales should be considered. In Chapter 5 we propose a hybrid link dimen-
sioning procedure that combine flows with other strategies aiming at accurate
estimations of required capacity at much lower timescales, e.g., T = 1ms. Fi-
nally, a potential extension of the proposed flow-based approach is to identify
whether distribution of traffic inside flows changes accordingly to different prop-
erties, such as transport protocol and flow duration. If significant differences
are found, improvements can be expected by refining the uniformity assumption
depending on such properties.

4.4.1 Practical Considerations

We believe that an operator is not going to change or deploy the entire moni-
toring system only with the purpose of having extra information for link dimen-
sioning. Therefore, the link dimensioning approach proposed in this chapter
focuses on cases where operators cannot make additions and changes to their
current traffic monitoring systems. For example, parameters definition in the
monitoring system cannot be changed because flows are also used by other,
and sometimes critical, operations. Another situation is that operators rely on
data provided by the monitoring system embedded in their network devices.
That is, if the router supports only traditional NetFlow metering process and
NetFlow v5, the monitoring system becomes limited to what the technology
offers and the operator is unable to implement additions on it.

There might be easier ways to solve the problem of link dimensioning. For
instance, one can have good estimations of traffic variance if the monitoring sys-
tem allows for additional traffic statistics to be coded and added to the metering
process (e.g., new information elements in NetFlow v9 or IPFIX). Ultimately,
the more accurate the estimation of traffic variance, the more accurate the es-
timation of required capacity. In addition, if the whole traffic aggregate can
be monitored as a single flow (this would require a change from the common
5-tuple flow key definition to a wildcard definition), flow records would report
statistics about the whole traffic aggregate and not in a per-flow basis. Now, if
the additional statistic to be metered for the whole aggregate is traffic variance,
the exported information could directly be used in the link dimensioning for-
mula to obtain the estimation of required capacity. This way, approaches such
as the one proposed in this chapter would not be needed. However, this kind of
modification in the monitoring system would only be possible in cases that the
system is deployed to mainly support link dimensioning. Other approaches de-
pending on the monitoring system would need to adapt to the changes. Clearly,
this is a quite unrealistic scenario.

By all means let’s be open-minded, but not so open-minded that our brains

drop out.

— Richard Dawkins

CHAPTER 5

Hybrid Flow-based Link Dimensioning

In the previous chapter we proposed a pure flow-based link dimensioning

approach. Due to the optimistic assumptions on the packet-level traffic

properties accurate estimations of required capacity for that approach are

limited to higher timescales. In this chapter we propose and validate a hy-

brid approach for link dimensioning. Supported by flow-level traffic models

and sporadic packet capturing, this hybrid approach is capable of provid-

ing accurate estimations of required capacity at much smaller timescales,

such as 1ms. The publication related to this chapter is [44].

Chapter 2:

Measurements

Chapter 3:

sFlow

Chapter 4&5:

NetFlow/IPFIX

Chapter 6:

OpenFlow

Chapter 7:

Conclusions

This chapter is organized as follows:

• Section 5.1 states the motivation and contribution of this chapter.

• Section 5.2 sets out the proposed hybrid traffic model.

• Section 5.3 describes the procedure for classifying flow records ac-
cording to their respective duration and rate.

• Section 5.4 presents an overview of the complete link dimensioning
procedure proposed in this chapter.

• Section 5.5 validates the proposed approach for link dimensioning.

• Section 5.6 discusses several operational constraints and guidelines
on parameters setting for the proposed procedure.

• Section 5.7 concludes this chapter.

104 Hybrid Flow-based Link Dimensioning

5.1 Motivation & Challenges

In Chapter 4 we have proposed an easy-to-use pure flow-based approach to
estimate traffic variance out of flow records and ultimately to compute required
capacity using the dimensioning formula from [109] – see Equation (1.2). The
approach in Chapter 4 assumes bytes to be uniformly distributed within their
respective flow record’s duration. Such assumption aggravates the averaging
problem already existent in flows. That is, short-term traffic bursts might be
completely overlooked. Consequently, the calculated traffic variance does not
reflect the actual traffic variance as observed at the packet-level and this results
in underestimation of required capacity. For the case of traces in our dataset,
accurate estimations using the pure flow-based approach were limited to higher
timescales. While such large timescale suffices for providing QoS for users on,
e.g., web browsing, these are not short enough for more demanding services,
such as real-time video streaming.

In this chapter we propose a hybrid link dimensioning procedure that uses
flow-level traffic measurements (NetFlow/IPFIX style) combined with analyti-
cal models and sporadic packet captures to efficiently describe packet behavior
within flows and, hence, accurately estimate required capacity at timescales as
short as T = 1ms. The traffic model proposed in this paper extends the origi-
nal model in [112] and allows us to predict traffic variance from flows at small
timescales. This variance is then used in the dimensioning formula from [109].

5.2 Models Definition

In this section we detail the flow-level traffic model upon which we build the
proposed procedure in this chapter. We start by giving an overview on the
base model from [112], and our proposed approach to estimate traffic variance.
Then, we present the packet correction factors that use information extracted
from packet-level traffic captures to support the modeling of packets behavior
within flows.

5.2.1 Flow-based Model

The authors of [112] present an M/G/∞ model to estimate traffic variance υ(T)
at the flow-level. In its simplest form, the model assumes that traffic flows are
created according to a Poisson process with rate λ and have i.i.d. duration D.
Furthermore, it assumes that all flows have an identical and constant traffic rate
r. The mean throughput is then ρ = λδr with δ = E[D] and the amount of

traffic in a period of time T is A(T) = r
� T
0
N(t)dt with N(t) being the number

of active flows at time t.

5.2. MODELS DEFINITION 105

The basic idea of the model is that N(t) is identical to the number of busy
servers in a M/G/∞ queueing station with arrival rate λ and service time dis-
tribution FD. Using this assumption, the variance υflow(T) of A(T) is found to
be given by:

υflow(T) = λr2
�
2T

� T

0

x(1− FD(x))dx

− δ

� T

0

x2fDr (x)dx+ δT 2(1− FDr (T))

�
,

(5.1)

where Dr is the residual distribution of D, i.e., 1− FD(x) = δfDr (x) [112]. As
usual, fX and FX denote, respectively, the density and distribution function of
a random variable X. Knowing the variance, Equation (1.2) from [109], is used
to compute the bandwidth requirement C(T, ε).

5.2.2 Flow-level Traffic Variance

The authors of [112] also give explicit expressions for the variance in case of
negative exponentially and Pareto distributed flow durations. For the former
the variance becomes:

υexp(T) = 2ρδ2r(e−T/δ − 1 + T/δ) . (5.2)

By examining empirical data we have found out that the distribution of flow
duration is long-tailed and fits better to Pareto- or Weibull-like distributions.
Nonetheless, as the authors point out in [112], and we also show in the experi-
ments in this chapter (Section 5.5), the choice of the duration distribution does
not affect much the resulting estimated variance. Therefore, one might even
consider to use a simpler model, where flows are assumed to have a constant
duration δ (further motivations for such a choice will be given in section 5.3).
Assuming a deterministic distribution FD, Equation (5.1) simplifies to (the proof
is given in Appendix B)

υconst(T) =

�
ρr(T 2 − T 3

3δ), if T < δ

ρr(T δ − δ2

3
), if T ≥ δ .

(5.3)

5.2.3 Packet-level Modeling of Flows

The basic model in [112] assumes that the traffic rate inside a flow is constant.
In general this is not true because IP traffic is transported in form of discrete
packets with non-constant inter-arrival times. As a consequence, the basic model
underestimates the traffic variance due to possible bursts of packets in a flow.

106 Hybrid Flow-based Link Dimensioning

In [112], the authors also proposed an extension of the model aiming at modeling
also the packet details within flows. Assuming that flows consist of packets of
constant size s arriving according to a Poisson process, the estimation of the
variance becomes (called corrected variance in the following):

υcorr(T) = υflow(T) + φ . (5.4)

with the correction term φ given by:

φ1 = ρsT (5.5)

accounting for the quantized nature of the traffic.
However, our experiments with empirical data reveal that the corrected vari-

ance using Equation (5.5) also underestimates the real variance. Therefore, we
propose two further extensions of the model by relaxing the assumptions of
Poisson arrivals and constant packet sizes. Next, these extensions are detailed.

Poisson arrival and non-constant packet size

It is clear that IP packets are not constant in size. Under the assumption that
packet arrivals inside a flow are Poisson distributed with i.i.d. non-constant
packet sizes S, the correction term φ in Equation (5.4) becomes

φ2 = ρTχ , (5.6)

where χ = E[S2
]

E[S]
with E[S] and E[S2] being the first and second moment of the

packet size, respectively. A proof for Equation (5.6) is given in Appendix C.1.
Note that Equation (5.5) immediately follows from Equation (5.6) for a deter-
ministic packet size distribution.

Bursty arrival and non-constant packet size

Similar to the previous extension, we assume that the packet size S is not con-
stant. In addition, we assume that packets arrive in bursts of P packets and the
time between bursts is i.i.d. and exponentially distributed, where P is geometri-
cally distributed with success probability p, i.e., P[P = i] = (1− p)i−1p. Hence,
the packet inter-arrival time IA is hyper-exponentially distributed with squared
coefficient of variation c2IA = 2−p

p , which suggests that p can be estimated from
an empirically measured squared coefficient of variation by

p =
2

1 + c2IA
. (5.7)

5.3. FLOW CLASSIFICATION 107

Remarkably, a packet burst of P packets can simply be modeled as a huge
“super-packet” of byte size S� =

�P
i=1

Si, where Si is the size of the ith packet
in the burst, i.i.d. like S. Since P and Si are independent, we obtain (see proof
in Appendix C.2):

E[S�] = E[S]/p ,

and

E[S�2] =
pE[S2] + 2(1− p)E[S]2

p2
.

Applying this result to Equation (5.6) with χ = E[S�2
]

E[S�] , the correction term φ in

Equation (5.4) becomes

φ3 = ρT
pE[S2] + 2(1− p)E[S]2

pE[S] . (5.8)

5.3 Flow Classification

From the work in [112], we learn that flow rate plays an important role on the
calculation of the traffic variance. In addition, from testing the model with
empirical data we have observed that using a single set of model parameters for
all flows in a measurement period does not provide satisfying results. One reason
is the fact that different applications may result in distinct flow characteristics.
Another reason is that we are working with flow records, which introduces an
artificial upper limit to the flow duration. In order to better account for this
behavior, we group flows according to their rate and duration. Ultimately, the
traffic variance that goes into the formula of Equation (1.2) is obtained by simply
adding up the individual variances of all classes.

Figure 5.1 illustrates how flow records related to each other by their respec-
tive rate and duration. This figure shows the positioning of flows in a scatter
plot by their rate and duration. We can also clearly see the upper limit intro-
duced to the flow duration given the use of flow records. In this 2-dimensional
classification, we divide the rate-duration space into cells of size θ×η and assign
all flow records in the measurement period to flow classes Γij , i, j ∈ N, where
Γij contains all flow records with a traffic rate in the interval [iθ, (i+1)θ[and a
duration in the interval [jη, (j+1)η[. As done for the classification per rate, for
each class Γij we determine the flow arrival rate λij , the flow traffic rate rij , the
average flow duration δij , and the average packet size sij . On defining a small
η as compared to the average duration of flow records, we can assume constant
duration δij within classes. In this case, δij is set to the average duration of
flow records in the class Γij and Equation (5.3) is used to calculate the flow-level
traffic variance for each individual class.

108 Hybrid Flow-based Link Dimensioning

 0

 10

 20

 30

 40

 50

 60

100 101 102 103 104 105 106 107

d
u
ra

tio
n

 (
s)

rate (bytes/s)

Figure 5.1: Example of flow records relationship by rate and duration; duration
upper-bound is defined by active timeout of 60s; for clarity points are sampled
every 100 and x-axis is truncated.

5.4 Overview of the Proposed Procedure

The complete procedure to calculate C(T, ε) from flow record measurements for
a given timescale T and bandwidth exceeding probability ε is summarized in
Figure 5.2. In this section we describe the procedure using the flows classifi-
cation per rate θ and duration η. The exact same procedure can be used for
classification only by rate. To do so, the value of η should be set to ∞.

The first step (line 1) consists of collecting flow record data for a desired
duration M . As explained in Section 4.1.2, flow records depend on the active
timeout ta and the inactive timeout ti. We will discuss the effects of the timeouts
in the experiments in Section 5.5.

In line 2, we assign the flow records to classes according to their traffic rate
and their duration. The granularity of the classes depends on the parameters η
for the flow duration and θ for the traffic rate. We discuss the use of different
combinations of values for η and θ in Section 5.6. Once all flow records have
been assigned, the model parameters are determined for each class (lines 4 to 7)
and the variance υcorr,ij(T) is computed using Equation (5.4). As already ex-
plained in Section 5.2.1, the calculation of the variance υflow(T) can be adapted
depending on the flow duration distribution (e.g., Exponential or Pareto) or if
constant flow duration is assumed. The calculation of the packet correction fac-
tor φ can also be adapted according to the operators requirements (as discussed
in Section 5.2.3).

5.4. OVERVIEW OF THE PROPOSED PROCEDURE 109

in: active timeout ta, inactive timeout ti
in: measurement duration M
in: timescale T , bandwidth exceeding probability ε
in: flow duration interval size η
in: flow traffic rate interval size θ
out: estimated bandwidth requirement C(T, ε)

1: create/collect flow records with timeout ta and ti in a measurement period of
length M

2: assign flow records with traffic rate ∈ [iθ, (i+ 1)θ[and duration ∈ [jη, (j + 1)η[
to class Γij , i, j ∈ N

3: for each class Γij , i, j ∈ N with flow records f ij
1 , . . . , f ij

Nij
do

4: flow arrival rate λij :=Nij/M

5: flow traffic rate rij :=1/Nij
�Nij

k=1 b(f
ij
k)/d(f ij

k)

6: flow duration δij :=1/Nij
�Nij

k=1 d(f
ij
k)

7: packet size sij :=
�Nij

k=1 b(f
ij
k)/

�Nij

k=1 p(f
ij
i)

8: calculate υcorr,ij(T) (see Equation (5.4))
9: end for

10: ρ :=
�

i,j λijδijrij
11: υcorr(T) :=

�
i,j υcorr,ij(T)

12: C(T, ε) := ρ+ 1
T

�
−2 log (ε) · υcorr(T)

Figure 5.2: Procedure for the estimation of the bandwidth requirement from
flow records.

Finally, the overall traffic rate ρ and variance υcorr(T) are computed in
lines 10 and 11 and the formula of Equation (1.2) is used to calculate the required
capacity C(T, ε) (line 12). Based on the results of our experiments, the selection
of values for the parameters ta, ti, M , η, θ, T , and ε will be discussed in
Section 5.6.

It is important to mention that we disregard flow records with a duration
of 0 seconds, which are mostly composed by single packets, because their traffic
rate is undefined. Depending on timeouts configuration, these records may
account for more than half of all flow records. However, the impact of removing
such flows on the proposed link dimensioning procedure is negligible. That is
because the total number of bytes from these flows is insignificant as compared
to the whole aggregate.

110 Hybrid Flow-based Link Dimensioning

5.5 Experimental Results

In this section we present and discuss results of experiments with the proposed
hybrid flow-based procedure for link dimensioning. The approach used to vali-
date the correctness of the proposed procedure is the same as the one presented
in Section 3.5.1.

The content of this section is organized as follows. In Section 5.5.1 we show
the impact of the flow duration distribution on link dimensioning. Both the
importance of the packet correction factor on the estimation of required capac-
ity at smaller timescales and how the packet-level parameters can be fitted are
shown in Section 5.5.2. In Section 5.5.3 we show the persistence of fitted packet-
level parameters for long term use on link dimensioning, and in Section 5.5.4
we demonstrate the consequences of fitting such parameters with non-Gaussian
packet traces. In Section 5.5.5 we show results of the extensive validation of
the proposed procedure using the entire measurements dataset. Finally, in Sec-
tion 5.5.6 we check the accuracy of the proposed procedure in this chapter by
means of quantifying the overestimation of obtained estimations.

5.5.1 Choice of Flow Duration Distribution

As explained in Section 5.2, to calculate the flow-level traffic variance one may
choose a formula according to the distribution of flow duration. From real flow
measurements we have observed that the duration of flow records tend to follow
a long-tailed distribution, hence, justifying the selection for a, e.g., Pareto-based
variance formula. However, the authors in [112] also show that flow duration
do not play an important role in the final estimation of required capacity in the
variance. Therefore, difference between estimations using different variance for-
mulas should be negligible. Nonetheless, since in this work we use flow records,
which implies a upper-bound for duration, and also by the fact that we clas-
sify flow records according to their properties, it is important to revalidate the
importance of the flow duration on variance formulas.

Figure 5.3 compares the estimation of required capacity computed using
exponential- (Equation (5.2)) and constant-based (Equation (5.3)) variance for-
mulas at various timescales T . These estimations are represented by Cexp and
Cconst, respectively. It also plots the estimation curve of empirical capacity
Cemp to illustrate the cases in which the flow-based estimation is successful.
This example shows that the difference between results from both formulas is
indeed insignificant and that we can use the simpler constant-based model. Note
that in this example we do not implement the packet correction factor φ. That
is, the flow-based procedure solely gives us a baseline estimation that suffices
required capacity at larger T . The packet-level correction factor is, therefore,

5.5. EXPERIMENTAL RESULTS 111

 0

 0.1

 0.2

 0.3

 0.4

 0.5

0.001 0.005 0.01 0.025 0.05 0.1 0.5 1

th
ro

u
g

h
p

u
t
(G

b
/s

)

timescale (s)

Cemp
Cexp
Cconst

(a) Trace from C with ρ = 0.04 Gb/s

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 2.1

 2.2

 2.3

0.001 0.005 0.01 0.025 0.05 0.1 0.5 1
th

ro
u
g

h
p

u
t
(G

b
/s

)
timescale (s)

Cemp
Cexp
Cconst

(b) Trace from D with ρ = 1.45 Gb/s

Figure 5.3: Estimation of required capacity at various T ; Cexp calculated with
υexp from Equation (5.2); and Cconst calculated with υconst from Equation (5.3).

needed so that the increasing demand as observed for Cemp at smaller T is met.
The packet correction factor is validated in the following sections.

5.5.2 Packet Correction Factor

The packet correction factor φ helps us to capture packet-level details within
flows, ultimately, aiming at better estimations of required capacity at small
timescales. Figure 5.4 provides an example of estimation of required capacity
Cflow using the flow-based model and each one of the three packet correction fac-
tors from Section 5.2.3. In this example, all parameters for the packet correction
factor formulas were computed out of the measurements. In Figure 5.4, Cconst

is computed using Equation (1.2) with variance υconst(T) from Equation (5.3).
For Cflow, however, the traffic variance is calculated using Equation (5.4) where
υflow(T) comes from Equation (5.3).

The packet-level correction φ1, from [112], assumes Poisson packet arrivals
and deterministic packet sizes within the flow records. Although better than
the purely flow-based method, as shown in Figure 5.4, φ1 is clearly still too
optimistic and leads to an underestimation of the required link capacity mainly
at small timescales. In φ2 we take into account the influence of the packet size
distributions appearing in the formula of Equation (5.6) through the ratio of
its second and first moments. The measured values of the first two moments of
packet size distribution slightly increases the estimated required capacity, but

112 Hybrid Flow-based Link Dimensioning

 2

 3

 4

 5

 6

 7

 8

0.001 0.005 0.01 0.025 0.05 0.1 0.5 1

th
ro

u
g

h
p

u
t
(G

b
/s

)

timescale (s)

Cemp
Cconst
Cflow + φ1
Cflow + φ2
Cflow + φ3

(a) Trace from B with ρ = 1.58 Gb/s

 1.5

 1.7

 1.9

 2.1

 2.3

 2.5

 2.7

 2.9

 3.1

 3.3

 3.5

 3.7

0.001 0.005 0.01 0.025 0.05 0.1 0.5 1

th
ro

u
g

h
p

u
t
(G

b
/s

)
timescale (s)

Cemp
Cconst
Cflow + φ1
Cflow + φ2
Cflow + φ3

(b) Trace from D with ρ = 1.45 Gb/s

Figure 5.4: Estimation of required capacity using different packet correction
factors.

still leads to an underestimation. The main take away of this analysis is that the
Poisson packet arrival process within flows is apparently too “friendly”. There-
fore, in φ3, in addition to the packet size, we explicitly take into account the
burstiness of the packet arrival process. This is done by the assumption that
the packets arrive according to a compound Poisson process with geometrically
distributed batch sizes and then fit (the first and second order statistics of) this
process to measurements on the real arrival process. The assumption of a com-
pound Poisson packet arrival process is, however, very conservative (i.e., “too
bursty”), which explains the (strong) overestimation of the required bandwidth
by φ3, as observed in Figure 5.4.

Since parameters for φ2 and φ3 computed from traffic measurements were
not sufficient to provide an accurate estimation of required capacity, we propose
such values to be fitted against empirically observed data. It is valid to observe
that the fitting procedure does not substitute the model because neither χ nor
p depend on other important parameters such as T and ε. Considering how the
flow model and the packet correction factor were built, the fitting of a single
value of χ or p is done for a specific ε and for any T . Therefore, only one
“universal” value of χ or p is obtained for the given trace.

Fitting procedure

The amount of traffic A(T), obtained from packet-level measurements, allows us
to compute the ground truth Cemp(T, ε) (see Equation (3.11)). A value for χ or

5.5. EXPERIMENTAL RESULTS 113

p is chosen such that the resulting estimation of required capacity Cflow satisfies
the condition ε̂ ≤ ε� at any T . ε� is the acceptable exceedance probability for
the fitting procedure only, i.e., the stopping condition for fitting. The value of
ε� should be chosen at most equal to ε so that the fitted values of χ and p would
ultimately yield Cflow ≥ Cemp for all considered T .

 1.8

 2.1

 2.4

 2.7

 3

 3.3

 3.6

 3.9

 4.2

 4.5

0.001 0.005 0.01 0.025 0.05 0.1 0.5 1

th
ro

u
g

h
p

u
t

(G
b
/s

)

timescale (s)

Cemp
Cflow + φ1
Cflow + φ2
Cflow + φ3

(a) Trace from B with ρ = 1.58 Gb/s

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 2.1

 2.2

 2.3

 2.4

0.001 0.005 0.01 0.025 0.05 0.1 0.5 1

th
ro

u
g

h
p

u
t

(G
b
/s

)

timescale (s)

Cemp
Cflow + φ1
Cflow + φ2
Cflow + φ3

(b) Trace from D with ρ = 1.45 Gb/s

Figure 5.5: Estimation of required capacity using packet correction factor φ
with fitted values of χ and p.

Figure 5.5 shows the estimation curves from the flow-based procedure, using
fitted χ for φ2 and fitted p for φ3. The main take away of this figure is that
results from the flow-based procedure supported by the packet correction factor
are accurate with fitted χ or p since there is no underestimation. However, such
accuracy is questionable at T where excessively overestimation happens, e.g.,
from 1ms to 10ms for Figure 5.5b. Such overestimation happens in situations
where χT=100ms > χT=1ms. That is, the estimation of the required capacity
requires greater χ at larger T than at shorter ones. We have also observed for
the example traces of Figure 5.5 that the packet level correction is needless at
T > 500 ms. That is, at such timescales χ = 0 and p = 1 cancel out the packet
correction factors φ2 and φ3, respectively.

Operators might be interested in a single T or a reduced set of T . In such
cases, the fitting procedure can be performed to those specific T only. This
would both reduce the execution time of the fitting algorithm and increase the
accuracy of the fitted χ or p. The later would help to avoid situations as shown
in Figure 5.4b, where the required χ and p differs too much for small and large

114 Hybrid Flow-based Link Dimensioning

values of T . In this case, fitted χ for large T is too high, or p is too low and,
hence, they are not an optimal value for the whole range of T .

Now the question is whether a fitted χ or p will remain valid for further
successive estimations of required capacity for the same link. Since the fitting
process involves packet-level measurements, it is important to minimize such
cost as much as possible. That is, if the fitted χ or p can be reused for a long
period of time, one will hardly ever need to perform packet measurements for
the fitting procedure. The persistence of fitted χ and p is presented in the next
section.

5.5.3 Persistence of Fitted χ and p

In the previous section we have shown that fitting χ or p provide us better results
at any timescale. However, the drawback is that the fitting process requires
packet-level traffic captures to compare the flow-based estimation against an
empirical one. The ideal situation would be that the fitted values for χ or p
remain valid for a long period of time, providing accurate estimations of required
capacity. In this section we show the consistency of fitting χ or p for successive
estimations of required bandwidth for the same location. The results in this
section used flow records classification by rate and duration and ε = 1%.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

0.001 0.005 0.01 0.025 0.05 0.1 0.5 1

th
ro

u
g

h
p

u
t
(G

b
/s

)

timescale (s)

Cemp,1
Cflow,1
Cemp,2
Cflow,2

Cemp,3
Cflow,3
Cemp,4
Cflow,4

(a) φ2 with fitted χ

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

0.001 0.005 0.01 0.025 0.05 0.1 0.5 1

th
ro

u
g

h
p

u
t
(G

b
/s

)

timescale (s)

Cemp,1
Cflow,1
Cemp,2
Cflow,2

Cemp,3
Cflow,3
Cemp,4
Cflow,4

(b) φ3 with fitted p

Figure 5.6: Estimation of required capacity for four successive traces from loca-
tion D with χ and p fitted only for trace 1.

Figure 5.6 shows the estimation curves for T ranging from 1ms to 1s. In
this figure, the estimations of required capacity for four successive traces from

5.5. EXPERIMENTAL RESULTS 115

location D are depicted. Figure 5.6a shows the estimations with fitted χ, and
Figure 5.6b with fitted p. For both cases, the fitting procedure was performed
only for trace 1 of the four traces and the fitted values reused for successive esti-
mations of required capacity. For each trace, the estimation Cflow is compared
to the trace’s respective empirical estimation Cemp. The main take away of Fig-
ure 5.6 is that Cflow is never significantly below the respective empirical Cemp.
This means that fitted values of χ and p for the first trace were successfully
reapplied in further successive estimations for traces from location D.

To extend the example illustrated in Figure 5.6, we assessed the validity of
fitted χ and p for a larger sequence of traces from locations D and E. Figure 5.7
shows the relative difference between Cemp and Cflow for eight traces from
location D with fitted χ or p. Figure 5.8 shows the same results for eight 15-
minute traces from location E. In both figures, the first 4 traces (traces 1 to 4)
were captured roughly two months before the last four traces (traces 5 to 8).
Notice that the eight 15-minute traces from location D in Figure 5.7a are the
same as the ones in Figure 5.7b. This remark also applies to the eight 15-minute
traces from location E used in plots of Figure 5.8.

The plots in Figures 5.7 and 5.8 show the difference in percentage of the
calculated Cflow using φ2 or φ3 and Cemp. That is, y-axis represent how much
the obtained Cflow, using fitted χ from trace 1, underestimates or overestimates
the empirical required capacity Cemp at different T . Clearly, due to the fitting
procedure, for trace 1 |Cflow − Cemp| ≥ 0 (i.e., no underestimation). However,
one can see that the overestimation at short T is not very high, most traces are
below 10% for any T . It means that the obtained exceedance probability ε̂ for
such cases is less than, but also close to the defined 1% for ε. There are also
cases of underestimation, but these are not less than −5%. This means that the
obtained error ε̂ is not much higher than the defined ε.

Note that values for fitted χ and p are very similar in all cases of Figures 5.7
and 5.8. However, few differences can be observed. For example, in Figure 5.8,
at T = 1ms, the approach using φ2 resulted in higher underestimation for traces
5 and 6 than the approach using φ3.

The main conclusion of Figures 5.7 and 5.8 is that the fitted value of χ
or p for a single trace remained valid for several successive traces, supporting
accurate estimation of required capacity and keeping differences between esti-
mations very small, specially at shorter T . The fitting procedure inherits from
the dimensioning formula of Equation (1.2) the dependency on Gaussian traffic.
Therefore, fitting with non-Gaussian traffic may not yield expected results. This
problem is better detailed in the next section.

116 Hybrid Flow-based Link Dimensioning

-5

 0

 5

 10

 15

 20

0.001 0.005 0.01 0.025 0.05 0.1 0.5 1

d
iff

e
re

n
ce

 (
%

)

timescale (s)

trace 1
trace 2
trace 3
trace 4

trace 5
trace 6
trace 7
trace 8

(a) φ2 with fitted χ for the trace 1

-5

 0

 5

 10

 15

 20

0.001 0.005 0.01 0.025 0.05 0.1 0.5 1

d
iff

e
re

n
ce

 (
%

)
timescale (s)

trace 1
trace 2
trace 3
trace 4

trace 5
trace 6
trace 7
trace 8

(b) φ3 with fitted p for the trace 1

Figure 5.7: Relative difference between Cflow and Cemp for eight successive
traces from location D with χ and p fitted only for trace 1.

-6

-4

-2

 0

 2

 4

 6

 8

0.001 0.005 0.01 0.025 0.05 0.1 0.5 1

d
iff

e
re

n
ce

 (
%

)

timescale (s)

trace 1
trace 2
trace 3

trace 4
trace 5
trace 6

trace 7
trace 8

(a) φ2 with fitted χ for the trace 1

-6

-4

-2

 0

 2

 4

 6

 8

0.001 0.005 0.01 0.025 0.05 0.1 0.5 1

d
iff

e
re

n
ce

 (
%

)

timescale (s)

trace 1
trace 2
trace 3

trace 4
trace 5
trace 6

trace 7
trace 8

(b) φ3 with fitted p for the trace 1

Figure 5.8: Relative difference between Cflow and Cemp for eight successive
traces from location E with χ and p fitted only for trace 1.

5.5.4 Fitting with non-Gaussian Traces

One of the key requirements of the link dimensioning formula of Equation (1.2)
is that input traffic is Gaussian (i.e., normal-distributed). Obviously, such re-
quirement also extends to the fitting procedure, since the dimensioning formula

5.5. EXPERIMENTAL RESULTS 117

is used. Attempting to fit χ or p using non-Gaussian traffic might result in
unexpected behavior of the fitting procedure. In this section we use an example
trace from location E that is non-Gaussian at larger timescales. Although it
is expected that traffic is presumably less Gaussian at smaller T [71, 110], we
have demonstrated in Section 2.4.3 that traffic might also loses its Gaussian
properties at larger T [40, 41].

 0.3

 0.5

 0.7

 0.9

 1.1

 1.3

 1.5

 1.7

 0.3 0.5 0.7 0.9 1.1 1.3

γ

timescale

γ=0.9649

 0.5

 0.7

 0.9

 1.1

 1.3

 1.5

 1.7

0 100 200 300 400 500 600 700 800 900

th
ro

u
g

h
p

u
t

(G
b

/s
)

time (s)

χ=12.7e3

Cpacket

(a) T = 10ms

 0.7

 0.8

 0.9

 1

 0.7 0.8 0.9

γ

timescale

γ=0.8851

 0.7

 0.8

 0.9

 1

0 100 200 300 400 500 600 700 800 900

th
ro

u
g

h
p

u
t

(G
b

/s
)

time (s)

χ=12.7e3

χ=1856e3 Cpacket

(b) T = 10s

Figure 5.9: Time series and estimations of required capacity using fitted χ for
example trace from location E at different timescales.

In the example trace used in this section, several traffic bursts of millisecond-
precision occurred close to each other in time, as one can see in the time series
of Figure 5.9a. Those bursts, however, did not impact negatively on Gaussian
fit, since at T = 10ms this trace had γ = 0.9649, as seen in the Q-Q plot
of the same figure. By increasing the size of the bins in the time series, i.e.,
T = 10s, the nearby bursts were averaged within the same time bin, as shown
in Figure 5.9b. This resulted in long-lasting traffic bursts with rates much

118 Hybrid Flow-based Link Dimensioning

higher than the average trace rate at such timescale. These long-lasting peaks
compromised the Gaussianity fit of the trace at T = 10s.

When executing the fitting procedure with the example trace of Figure 5.9,
the yield values for χ and p do not make sense at larger timescales. The proposed
packet correction factor is intended for helping the flow-based model to estimate
required capacity at shorter T . Therefore, the larger the T , the more we expect
that χ ∼ 0 and p ∼ 1. That is, the packet correction factor is cancelled since it is
not needed at larger T (see Figure 5.4 and 5.5). However, in this example trace,
the fitted values of χ and p are more conservative at large T (i.e., estimations
of required capacity are much higher than actually needed).

Consider that the stop condition for the fitting procedure is set to ε� = 1%.
The time series of Figure 5.9a consists of 10k bins of size T = 10ms. This means
that the fitting procedure allows for 900 of these bins to have values above the
estimated Cflow(T, ε�). Under these parameters, we obtain χ = 12700. When
defining T = 10s, nearby traffic peaks between 100s and 300s of the time series
in Figure 5.9b are averaged within few time bins, resulting in huge bursts. At
T = 10s, the definition ε� = 1% allows for only 0.9 bins to have traffic rate above
the estimated Cflow(T, ε�). This results in χ > 5× 106. Even if we consider the
interpolated value between the 99-th and 100-th percentiles of the trace traffic
rate distribution, the fitting procedure unreasonably yields χ > 1.8× 106.

The main take away of this analysis is that the resulting traffic peaks at
T = 10s demand disproportionally high values of χ so that the fitting condi-
tion of ε� = 1% is met. Considering practical deployment of link dimensioning,
χT=10s = 12700 would suffice, since the operator would be interested in finding
a long lasting χ that potentially takes care of regular traffic bursts and disre-
gards unusual peaks – i.e., focusing on customary network behavior and not on
exceptions.

It is important to mention that at higher timescales the packet-based link
dimensioning approach from [109] also fails to estimate the required capacity of
traces that behave in a similar way than the example trace in this section. In the
next section we present results of a thorough validation of the proposed hybrid
flow-based approach using all traces from the dataset introduced in Chapter 2.

5.5.5 Extensive Validation and Overall Results

In this section we validate the proposed flow-based procedure for link dimension-
ing by estimating the required capacity for all traces in our dataset. We present
results for both packet correction factors φ2, from Equation (5.6), and φ3, from
Equation (5.8). A single fitting of χ and p is done for each location using the
very first trace in chronological order. Then, the obtained values for χ and p
are reapplied to all successive traces for each location. Our conclusions on the

5.5. EXPERIMENTAL RESULTS 119

quality of estimations are drawn based on the obtained exceedance probability ε̂
given by Equation (3.12). As well as in previous sections, we used a60i20 flows,
i.e., created with active timeout of 60s and inactive timeout of 20s. Resulting
flow records were classified by their respective rate and duration, following the
procedure detailed in Section 5.3. The parameters used for the classification
were θ = 1000 bytes/s and η = 100ms. To comply with previous works, the
exceedance probability was set to ε = 1% and T varied from 1ms to 1s.

Recap: The estimation of required capacity is considered successful when

it yields C(T, ε) ≥ Cemp(T, ε), which is by definition the same as ε̂ ≤ ε.

The summary of results is shown in Figure 5.10, where for each location the
average and standard deviation of ε̂ at various T are plotted. One can see the
small difference on results between the approach using φ2, in Figure 5.10b, or
the one using φ3, Figure 5.10c. Nonetheless, the approach using φ3 is slightly
more conservative. In addition, for comparison purposes, Figure 5.10a shows
the average and standard deviation of ε̂ for the purely packet-based approach
as proposed in [109]. That is, mean traffic rate and variance were calculated
directly from packets. The main take away of this comparison is that our pro-
posed approaches, helped by the packet correction factors, manage to achieve
more conservative estimations at short T , but they demonstrate to be more un-
stable at large T . The purely packet-based approach was successful (i.e., ε̂ ≤ ε)
in about 22% of all traces at T = 10ms and 48% at T = 1s. Due to conservative
estimations, our procedure using φ2 correctly estimated required capacity for
64% of traces at T = 10ms and for 22% at T = 1s. Furthermore, using φ3,
success was improved to 87% of traces at T = 10ms and 28% at T = 1s.

For the proposed procedure, the worse estimations at T ≥ 100ms can be
related to fitting of parameters χ and p using non-Gaussian traces. As explained
in Section 5.5.4 this would result in better estimations of required capacity for
shorter T , but traffic bursts at larger T would result in higher ε̂. Therefore,
underestimation problems at larger T could be alleviated by assuring χ and p
to be fitted using Gaussian traffic. Nonetheless, if one considers all estimations
of required capacity that resulted in a not too high ε̂, let’s say less than 2%,
results become more expressive for our procedure. In such case, for the proposed
procedure using φ2, 95% and 44% of traces had ε̂ ≤ 2% at T = 10ms and T = 1s,
respectively. For our procedure using φ3, 99% and 59% of traces had ε̂ ≤ 2% at
T = 10ms and T = 1s, respectively.

5.5.6 Quantifying the Overestimation

Although ε̂ ≤ ε is desirable, excessive overestimation is not. If overestimation
happens it should be between reasonable boundaries, i.e., not overly higher

120 Hybrid Flow-based Link Dimensioning

 0

 0.01

 0.02

 0.03

 0.04

0.001 0.01 0.1 1

ε

timescale (s)

A
B

C
D

E
F

ˆ

(a) packet-based link dimensioning

 0

 0.01

 0.02

 0.03

 0.04

 0.05

0.001 0.01 0.1 1

ε

timescale (s)

A
B

C
D

E
F

ˆ

(b) flow-based link dimensioning using φ2 with fitted χ

 0

 0.01

 0.02

 0.03

 0.04

 0.05

0.001 0.01 0.1 1

ε

timescale (s)

A
B

C
D

E
F

ˆ

(c) flow-based link dimensioning using φ3 with fitted p

Figure 5.10: Average and standard deviation of ε̂ per location for all traces in
our dataset.

5.5. EXPERIMENTAL RESULTS 121

than the empirical capacity Cemp for any T and ε. For example, in the plots
of Figure 5.10b and 5.10c one can see that at very small timescales ε̂ = 0
for location A and the standard deviation is insignificant. The reason for this
becomes clear when computing the relative error RE, from Equation (3.13).
Figures 5.11 and 5.12 show the normalized RE for all traces in our dataset.
Note that, since there are different number of traces per location, the x-axis in
the plots of these figures shows the percentage of traces per location sorted from
left to right by their respective RE.

Recap: The relative error RE is used to assess how much for more (over-

estimation) or for less (underestimation) the estimated required capacity

C(T, ε) differs from the empirical ground truth Cemp(T, ε).

In Figures 5.11 and 5.12 one can see that the overestimation is actually quite
high for most traces from A at small T . Using φ3 with fitted p at T = 10ms
(Figure 5.12a), for only about 15% of traces from A the C(T, ε) is less than 50%
more the Cemp(T, ε). This problem, although with less intensity, can also be
observed for traces from location C. As previously mentioned, in our experi-
ments we fitted χ and p only once. Locations A and C illustrate what happens
when the shape of the traffic in the measured link constantly varies. Since the
measured link in these locations carries traffic of a small number of users, it
only takes few users to change traffic properties and invalidate previously fitted
χ and p. Besides, these measurements also capture differences in traffic due
to day and night patterns. By fitting parameters only once, the “bad fitting”
was never fixed and for the other remaining traces the fitted values of χ and
p were not the correct ones and, ultimately, yielded mostly very conservative
results. For such networks, a system implementing the proposed link dimen-
sioning procedure would better to also implement a checking process to, e.g.,
decide whether to run the fitting of parameters again once exorbitant values
of estimated required capacity were obtained (i.e., the fitting process should be
performed again aiming at having proper values for χ or p). Another idea would
be to use different values of χ and p fitted at different times of the day.

Considering only traces from C, at T = 1s and using φ2 with single fitting
of χ in around 76% of traces the estimated C(T, ε) was kept in between 20%
for more or less the empirical estimation Cemp(T, ε). At the same timescale and
using φ3 with fitted p, around 84% of traces had estimated capacity within this
range. For most of the traces of the other locations (with a larger and regular
number of active users throughout the measured period) the estimated required
capacity C(T, ε) remained between reasonable bounds, i.e., between 20% for
more or less the empirical estimation. For example, at T = 10ms, excluding
those from locations A and C, using φ2 around 96% of all traces had estimated

122 Hybrid Flow-based Link Dimensioning

-50

-40

-30

-20

-10

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50 60 70 80 90 100

R
E

 (
%

)

ordered traces per location (%)

A
B
C

D
E
F

(a) T = 10ms

-50

-40

-30

-20

-10

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50 60 70 80 90 100

R
E

 (
%

)
ordered traces per location (%)

A
B
C

D
E
F

(b) T = 1s

Figure 5.11: Relative Error for all traces per location using φ2 with fitted χ;
y-axis is limited to [−50..50] for visualization reasons.

-50

-40

-30

-20

-10

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50 60 70 80 90 100

R
E

 (
%

)

ordered traces per location (%)

A
B
C

D
E
F

(a) T = 10ms

-50

-40

-30

-20

-10

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50 60 70 80 90 100

R
E

 (
%

)

ordered traces per location (%)

A
B
C

D
E
F

(b) T = 1s

Figure 5.12: Relative Error for all traces per location using φ3 with fitted p;
y-axis is limited to [−50..50] for visualization reasons.

C(T, ε) within the range of 20% for more or less the empirical estimation and,
using φ3, it was more than 87% of all traces. In the latter case, for few and not
necessarily consecutive traces from F , the fitted value of p was not appropriate,
leading to excessive overestimation of required capacity.

5.6. OPERATIONAL CONSIDERATIONS AND SELECTION OF
PARAMETERS 123

5.6 Operational Considerations and Selection of
Parameters

The proposed flow-based procedure relies in a number of parameters. This sec-
tion is dedicated to discuss the parameters that were not presented in previous
sections and their respective impacts on the accuracy of the proposed link di-
mensioning procedure.

5.6.1 Measurement duration

In this paper we have only used 15-minute long traces, hence, simulating traffic
being monitored every 15 minutes. The measurement duration should be rea-
sonably chosen such that the traffic during the measurement can be considered
stationary, as required by the dimensioning formula of Equation (1.2). Longer
periods might capture undesired periodic changes on traffic behavior hurting
its stationarity character. However, that’s not true to assume that traffic will
always be stationarity when measured in periods of 15 minutes. It will depend
on the traffic nature and network users behavior. The measurement period of
15 minutes used in this paper was chosen to comply with previous work [109].

5.6.2 Flow timeouts

The active timeout ta and inactive timeout ti are set on the flow exporter and
they define the length of a flow record and, consequently, the level of aggregation
of traffic information. The chosen timeouts will depend on the purposes of traffic
monitoring at the network operator. The analysis of previous sections were
presented using flow records created with ta = 60s and ti = 20s. However, we
have tested our proposed flow-based link dimensioning procedure using many
other combinations of timeouts, varying ta from 5s to 120s and ti from 2s to 30s
(always obeying the condition ta > ti). We have not observed any significant
difference between results obtained with different timeouts and, therefore, we
assume that, for the tested range of values, the timeouts combination does not
impact on the accuracy of the estimated required capacity. It is important to
know, however, that the amount of processed flow records is the most dominating
factor in the computation time in the proposed flow-based procedure.

5.6.3 Flow records classification

In the previous sections, we presented results obtained with flow records clas-
sified by rate θ = 1000 bytes/s and duration η = 100 ms. Since the definition
of these parameters depends on the traffic nature, the network operator would

124 Hybrid Flow-based Link Dimensioning

also be responsible for such task. By testing the proposed flow-based proce-
dure we have observed that the smaller the θ and η parameters are defined, the
more accurate is the estimation of required capacity. However, the smaller are
such parameters the more classes will be created and, consequently, the more
time the procedure may take to compute the required capacity. From the re-
sults presented above we can conclude that the settings used in this paper are
enough for providing satisfactory accuracy on estimations of required capacity.
It should be emphasized that the proposed link dimensioning procedure is very
lightweight and even a standard computer can perform the computations for
20K flow classes in few seconds.

5.6.4 Exceedance probability ε

To comply with previous works [96, 109, 112], in this paper we have always set
ε = 1%. Clearly, it does not make sense to choose smaller ε at large T when the
measurement duration is no longer than 15 minutes (as in the case of this paper).
For example, setting ε = 1% at T = 10s means that the dimensioning formula
should return an estimated required capacity so that under-provisioning happens
in only 0.9 out of 90 time bins. Consequently, the link dimensioning procedure
may result in excessive overestimation so that over-provisioning happens for
all time bins. In addition, network operators must take into consideration the
length of the time bin defined by T . That’s because the larger T the more
traffic is aggregated within a single time bin. This means that, depending on
the link load, a single under-provisioned time bin at T = 1s might result in
much bigger problems of performance than a under-provisioned time bin at
T = 10ms. Therefore, ε must be chosen to avoid underestimation but also
avoiding unnecessary overestimation.

5.6.5 Fitting of χ and p

The crucial point of the fitting procedure for the packet corrections φ2 and φ3

is that ε� should be chosen such that Cflow ≥ Cemp. The chosen value for ε�

should be enough to avoid underestimation but also not too conservative so
that overestimation is not excessively high. For example, ε�1 = ε will result in
Cflow,1 = Cemp,1 and ε̂ = ε. If the fitted value of χ or p is subsequently used
for estimating required bandwidth of the next 15-minute measurement period,
and Cflow,2 < Cemp,2, the end result may be the undesired ε̂2 > ε. Therefore,
ε� should be wisely chosen obeying ε�2 < ε. This way Cflow,2 > Cemp,2 for the
fitted trace, and a safety margin is kept in order to assure ε̂2 ≤ ε for successive
traces using the previously fitted χ or p. To play safe, the network operator may
choose ε� = ε, as done in the experiments in this paper. To further reduce risks

5.6. OPERATIONAL CONSIDERATIONS AND SELECTION OF
PARAMETERS 125

of having many underestimation cases for successive traces, χ and p should be
fitted only using Gaussian traces.

5.6.6 Choice between φ2 and φ3

Concerning the packet correction factors φ2 and φ3, we have showed that the
latter provided better results than the former. However, this small gain comes
at a cost. The trade-off is that φ3 requires the second moment of packets size
E[S2] (see Equation (5.8)). A simple modification in the flow exporter is needed
so that the sum of squares of packets size is also exported within the flow record.
Therefore, φ3 deployment is limited to cases in which network operator is able
and willing to modify the flow exporter. Modifications can easily be made if
the operator uses an open-source flow monitoring tool. For example, we have
implemented such modifications in the open source exporter YAF [61].

5.6.7 Procedure Execution Performance

Regarding the performance of the whole link dimensioning procedure, one can
divide it in two parts: the traffic measurements and the dimensioning calcula-
tions. Although our proposed procedure requires sporadic packet-level traffic
measurements for the fitting of parameters, these captures do not need to hap-
pen for long periods and the main basis of the procedure relies solely on flow-level
measurements. It remains, therefore, a lightweight procedure in terms of traffic
measurements. Concerning execution time of the calculations for estimating the
required capacity, we have observed that even for the largest traces (i.e., those
from location D, E and F) the whole procedure usually took less than a minute
to complete. For example, for a large 15-minute trace from location D, our pro-
cedure classified more than 5.6 million flows (defined as a60i20) by their respec-
tive rate and duration into almost 14000 classes (defined by θ = 1000 bytes/s
and η = 100ms, which is the most granular classification tested by us). For
each class a variance was computed using Equation (5.4). These variances were
summed up and, with the trace average rate ρ, applied into the link dimen-
sioning formula. Ultimately, the estimation of required capacity C(T, ε) was
obtained for the same range of timescales used throughout this paper (i.e., 1ms
to 1s). The overall procedure took around 50 seconds to complete. Nonetheless,
the most costly operation in the whole proposed procedure is the fitting process
of parameters for the packet correction factor. This process mainly depends on
the range of timescales of interest. The larger the range, the longer the fitting
process takes to fit the parameters such that the condition ε̂ ≤ ε is satisfied for
all the considered timescales. Using the same example trace from D, it took
around 1min45s for fitting p (used in φ3) for the same range of timescales from

126 Hybrid Flow-based Link Dimensioning

1ms to 1s. Note that these time measurements come from a prototype brute-
force implementation (mix of C and shell scripts). System performance was not
the focus of this paper. However, one can certainly expect significantly lower
run times with a proper production-ready implementation.

5.6.8 Link dimensioning in practice

It is inevitable that network operators, even having good estimations of required
capacity for their links, will eventually add safety margins on the top of these es-
timations. As mentioned in the beginning of this paper, this is already adopted
in practice. However, nowadays operators add margins on top of traffic averages
obtained from reading SNMP counters at very coarse time resolutions, such as
5-minute averages. The procedure proposed in this work comes to add more
reliability on link dimensioning by providing a well founded baseline estima-
tion. Independently of adding or not a safety margin on top of the estimations,
our procedure proved to be, at finer time resolutions, as much efficient as a
packet-based approach. Nonetheless, by adding a safety margin, problems of
underestimation of required capacity due to, e.g., fitting of parameters with
non-Gaussian traces, can be alleviated. For instance, in cases of Figures 5.7
and 5.8 around 5% extra capacity (i.e., on top of the estimated one) would
already be sufficient for all considered traces to have ε̂ ≤ 1%.

5.7 Concluding Remarks

In this chapter we proposed a hybrid flow-based link dimensioning approach.
Our approach extends the work from [112] by adding a method to capture
packet-level details besides the flow-level ones. The proposed approach in this
chapter provides a well founded baseline estimation of required capacity for
network traffic streams. By using traffic measurements at the flow level, and
seldom requiring packet captures, our proposed procedure is – almost – as easy-
to-deploy as SNMP-based approaches and with the advantage that it allows to
gather information about traffic fluctuations at finer time resolutions, which was
the main drawback of the pure flow-based approach propose in Chapter 4.

The main advantage of our procedure is that by integrating analytical mod-
eling with measurement data, estimations of required capacity are – almost – as
accurate as fully packet-based approaches without the overhead of performing
continuous packet captures. Although requiring packet-level measurements, we
have demonstrated that the fitted values for χ and p using 15-minute long packet
captures remained valid for very long periods of time. Measurement-wise, this is
a lightweight approach compared to the fully packet-based approach from [109].

5.7. CONCLUDING REMARKS 127

Moreover, the proposed approach in this chapter is able to estimate the required
bandwidth within seconds even when several thousands of flows are measured.

Our findings showed that our procedure is able to accurately estimate the
required capacity for a range of time resolutions as low as 1 millisecond. For
most applications, e.g., web browsing, end users usually experience QoS at the
timescale of 1 second. However, having accurate estimations of required capacity
for shorter timescales can help ensuring QoS for delay sensitive applications,
such as VoIP and real-time video streaming.

I, a universe of atoms, an atom in the universe.

— Richard P. Feynman

CHAPTER 6

OpenFlow-based Link Dimensioning

Software-defined Networking (SDN) has recently gained lots of attention

from the research community and industry. The main idea behind SDN is

the decoupling of the control and data planes, which allows for the under-

lying infrastructure to be abstracted for network applications and services.

OpenFlow is a largely adopted standard to implement SDN. Besides en-

abling the communication between control and data planes, OpenFlow also

implements basic traffic monitoring and measurement operations. In this

chapter we introduce an approach to use OpenFlow traffic measurements

for link dimensioning. We also present a preliminary study on the qual-

ity of traffic measurements obtained from current implementations of the

OpenFlow protocol. The publication related to this chapter is [37].

Chapter 2:

Measurements

Chapter 3:

sFlow

Chapter 4&5:

NetFlow/IPFIX

Chapter 6:

OpenFlow

Chapter 7:

Conclusions

The organization of this chapter is as follows:

• Section 6.1 motivates the research presented in this chapter and
states our contribution.

• Section 6.2 introduces the OpenFlow standard focusing on the main-
tenance and monitoring of traffic data.

• Section 6.3 proposes an approach to retrieving traffic measurements
from OpenFlow for link dimensioning purposes.

• Section 6.4 assesses the quality of OpenFlow traffic measurements.

• Section 6.5 concludes this chapter.

130 OpenFlow-based Link Dimensioning

6.1 Background

Recently, SDN has gained lots of attention from the research community due
to its – although questionable to some – revolutionary idea of separating the
control and data planes on the network. The focus is on abstracting the un-
derlying infrastructure from the application and services, which may simplify
network management. For example, the authors in [103] demonstrated that it
was possible to simplify the implementation of MPLS VPNs using OpenFlow.

OpenFlow is certainly the most famous technology within the context of
SDN. OpenFlow is a specification that includes switch, controller and protocol
components. The current version of OpenFlow specification is 1.4 [91]. How-
ever, most available OpenFlow implementations are based on the 1.0 version [89].
Many network vendors already include OpenFlow within their switch and router
devices. Among the many functionalities of the OpenFlow switch, it is of our
interest that the OpenFlow switch is responsible for performing some basic traf-
fic measurements. The OpenFlow switch meters statistics of observed flows
by means of counters (bytes and packets). The value of these counters can
be retrieved by the OpenFlow controller (i) at any time in a push fashion by
requesting such information to the switch, or (ii) occasionally when receiving
some specific messages from the switch – in Section 6.2 we detail these opera-
tions. The metered statistics can be used by applications running on top of the
controller.

To the best of our knowledge, the use of OpenFlow traffic measurements
for link dimensioning has not yet been explored. Nonetheless, several works
have used traffic measurements from OpenFlow to support other operations
such as traffic engineering [108, 113, 115] and security [118]. However, traffic
measurements in SDN might be unreliable due to many reasons, from hard-
ware limitations to network setup (e.g., limited bandwidth between switch and
controller). Many works have addressed this problem in different ways. For
example, in [68] the authors aimed at detecting large traffic aggregates by pe-
riodically adjusting wildcard rules in the OpenFlow switch and reducing switch
overhead. This study later led to [116] where a measurement framework is pro-
posed for SDN networks. In [84, 117] authors explore the relation between hard-
ware resources and measurements accuracy. There are other works proposing
different ways to measure traffic in SDN networks. For example, [23] proposes
a monitoring framework that actively measures traffic by polling statistics from
OpenFlow switches, while in [115] authors propose a passive approach that only
uses reporting messages from OpenFlow switch to controller. The quality of
pure OpenFlow measurements is assessed in [64]. The drawback of such work
is, however, that Iperf was used to generate synthetic UDP traffic at a max-
imum rate of 1 Mbps, which clearly is not representative of real traffic rates.

6.2. OPENFLOW 131

Finally, [8] surveys traffic engineering solutions for SDN networks, giving special
attention to, among others, tools for traffic analysis.

6.1.1 Contribution

Motivated by the increasing interest on SDN and the fast-growing adoption of
OpenFlow, in this chapter we introduce an approach to use traffic measurements
obtained via OpenFlow protocol for link dimensioning purposes. OpenFlow cur-
rently focus on traffic forwarding and management, but not on measurements.
Therefore, OpenFlow measurements are still rough when compared to NetFlow.
In this chapter we also assessed the quality of traffic measurements provided
by current implementations of the OpenFlow protocol and whether the mea-
surement data can be used for link dimensioning. This study is done in both a
virtual and real deployment.

In the approach of this chapter we define OpenFlow flows in the same way
we define NetFlow/IPFIX flows in Chapters 4 and 5. By doing so, OpenFlow
can theoretically provide us with very similar measurements to those provided
by NetFlow/IPFIX technologies. Therefore, it is important to understand that
in this chapter we do not develop a new link dimensioning approach, but we
introduce a method to obtain flow-level traffic measurements using OpenFlow.
The measured data from OpenFlow can be applied to one of the flow-based
approaches proposed in Chapters 4 and 5.

6.2 OpenFlow

In this section we provide a brief overview on the operation of OpenFlow. For
brevity’s sake we only focus on operations that are relevant to the problem
of traffic measurement and link dimensioning. One can find a more complete
overview of the OpenFlow standard on, what is by the time of this thesis, its
latest specification [91].

6.2.1 Overview

OpenFlow was originally proposed in [83] to enable researchers to run exper-
iments in campus networks. By decoupling the control and switch planes,
OpenFlow allowed for the separation of research and production traffic. This
way, experiments could easily be done with research traffic without impacting
on production traffic. Decoupling control and data planes results, on the latter,
in a “dumb” switch designated to merely execute tasks without having a saying
on, e.g., routing decisions. On the control side, the OpenFlow controller im-

132 OpenFlow-based Link Dimensioning

plements all the intelligence needed to, e.g., decide on which port to forward a
packet based on one or even multiple routing protocols.

Control

Plane
OpenFlow

controller

Data

Plane

OpenFlow switch

OpenFlow protocol

Flow

table 1

Flow

table n
. . .

flow tables pipeline

Figure 6.1: Overview of OpenFlow components.

As shown in Figure 6.1, the OpenFlow standard defines three basic compo-
nents, namely controller, switch and protocol. The OpenFlow protocol enables
the communication between controller and switch. In an OpenFlow network the
switch can be either an OpenFlow-only or an OpenFlow-hybrid switch. While
the former only operates OpenFlow, the latter is a typical Ethernet switch with
an embedded OpenFlow implementation. The OpenFlow-hybrid switch must
have a decision mechanism that decides whether a packet should be treated as
ordinary traffic, or processed by the OpenFlow that is running in parallel to the
regular switch. The decision mechanism is vendor-specific and it is not part of
the OpenFlow specification.

6.2.2 Flow Tables

In the OpenFlow switch a flow table contains packet forwarding instructions
and per-flow statistics. Forwarding instructions are managed by the OpenFlow
controller via messages exchanged with the switch, as detailed in the next sec-
tion. The switch is solely responsible for maintaining per-flow statistics, such
as packet and byte counters. A OpenFlow switch must have at least one flow
table, but might have multiple in what is called flow table pipeline. Clearly,
the more tables the longer an incoming packet might take to be processed and
forwarded. Each entry in a flow table consists of information related to a single
flow only. A flow table entry consists of, among others:

6.2. OPENFLOW 133

• the match fields used to identify the flow entry which an incoming packet
belongs to;

• the action set consisting of what to do with the packets that match the
entry’s matching fields;

• the priority that defines from which entry the switch must execute the set
of instructions in case of multiple matches for a single packet;

• counters that keep record of basic statistics about the flow;

• timeouts that define the entry’s lifetime.

The match fields for a flow can be various, which makes OpenFlow very
flexible on the definition of flows. A flow can be defined as an IP connection,
for example, using the 5-tuple key as in NetFlow v5: source and destination
IPs, source and destination ports and transport protocol (as described in Sec-
tion 4.1.2). OpenFlow also allows for a broader definition of flows, e.g., by
a VLAN tag or by a port number only. Moreover, two different flows within
the same table can have completely distinct match fields, e.g., one defined by
the 5-tuple and the other defined by a VLAN tag. The OpenFlow controller
is responsible for defining the match fields for a flow table entry. The table
flow entry that wildcards all fields (i.e., match any packet) is called the table-
miss flow entry, and it has the goal of dealing with packets of unknown flows.
According to the OpenFlow standard, every table must have a table-miss flow
entry.

The action set of a flow table entry defines what to do with packets whose
properties match the entry’s match fields. The action can be the forwarding
of the packet to a specific OpenFlow port, or further searching for an action
set in another table. In case of a pipeline of multiple flow tables, the walking
through tables always goes forward. That is, the set of instructions of an entry
in a flow table cannot have an action to move back to a table whose index is
lower than the current one. In particular, the action set of the table-miss entry
should support sending a message to the OpenFlow controller to inform about
the received packet that does not match any flow definition. This situation is
further explained in Section 6.2.3.

Every flow table entry is given a priority. That’s because the flexible and
broad definition of flows in OpenFlow allows for situations that a single incoming
packet matches multiple table entries. For example, let’s consider a flow table
entry with priority 1 that has match fields defined by the source IP address,
and another flow table entry with priority 0 that is defined by a VLAN tag.
If a single packet matches both entries, the OpenFlow switch will execute the
action set of the entry with highest priority only, in this case priority 1. The

134 OpenFlow-based Link Dimensioning

table-miss flow entry has priority 0, the lowest possible. That is, its action set
is only executed if, and only if, the incoming packet does not match any other
table entry.

Each flow table entry maintains some basic statistics counters. As defined
in the OpenFlow specification [91], the switch should keep on a per-flow basis
the number of received packets and bytes and the flow duration.

Finally, for every flow table entry two timeouts are fixed, namely hard timeout
and idle timeout. Their definition is very similar to the active and inactive
timeouts in NetFlow, as explained in Section 4.1.2. The hard timeout defines the
maximum lifetime (in seconds) of a flow table entry, and the idle timeout defines
how long (in seconds) an entry remains in the flow table after the receiving the
last matching packet. When either the hard or the idle timeout of an entry
expires, the entry is removed from the flow table and, if previously established,
the OpenFlow controller is notified of the removal. Given that tables in the
OpenFlow switch must always have a flow-miss entry, the timeouts for the flow-
miss entry should be set to zero (i.e., undetermined), preventing it to expire.

6.2.3 Protocol Messages

The communication between OpenFlow controller and switch is enabled by the
OpenFlow protocol. It supports three message types. The controller-to-switch
messages are initiated by the controller with the purpose to manage and check
the switch. The asynchronous messages are initiated by the switch with the
purpose to update the controller about various changes, such as on flow table
entries. The symmetric messages can be started by either the controller or the
switch. Symmetric messages are used for handshake upon the establishment of
connection between the controller and the switch, and also for the switch to
report problems to the controller.

An exhaustive description of the messages of OpenFlow protocol can be
found in the OpenFlow specification [91]. For brevity’s sake, however, next
we describe only the messages that are relevant to our work, i.e., traffic mea-
surements for link dimensioning purposes. Figure 6.2 helps to understand the
exchange of these messages between controller and switch. The OpenFlow mes-
sages that we are interested in are the following:

• OFPT_PACKET_IN: message sent from the switch to the controller every
time a packet does not match any of the flow table entries but the table-
miss flow entry. Notice that sending an OFPT_PACKET_IN message is not
mandatory for the actions set of a table-miss entry, which could simply
drop the received packet.

6.2. OPENFLOW 135

• OFPT_FLOW_MOD: message used by the controller to add, modify or delete
a flow entry in a specific table at the switch. An important feature is
that the flag OFPFF_SEND_FLOW_REM should be set in an OFPT_FLOW_MOD

that is adding or modifying a flow entry. This way once a flow entry is
removed by the switch due to timeout expiration, the switch sends an
OFPT_FLOW_REMOVED message to the controller.

• OFPT_FLOW_REMOVED: message sent from the switch to the controller to
inform about the removal of a flow entry from a flow table. This message
carries all the statistics measured for the removed flow during its lifetime.
Flags indicate the reason for removing the flow entry (e.g., hard or idle
timeout expiration).

• OFPT_MULTIPART_REQUEST: message sent from the controller to the switch
to request measured statistics. To specifically request statistics from active
flow entries of a given flow table, this message must by of type OFPMP_FLOW.

• OFPT_MULTIPART_REPLY: message sent from the switch to the controller
containing requested statistics. This message will be of type OFPMP_FLOW,
and consisting of statistics of active flow entries in a given table, when
sent in response to an OFPT_MULTIPART_REQUEST of the same type.

Figure 6.2 shows the exchange of messages listed above between the
OpenFlow controller and the switch, and the processes that trigger the mes-
sages exchange. Note that, for brevity’s sake, this figure considers that the
OpenFlow switch implements a single flow table (i.e., table 0). However, ac-
cording to the OpenFlow specification [91], the actions set of a flow entry might
contain the command to search for another match in another flow table. The
OFPT_FLOW_MOD message received by the switch in reply to an OFPT_PACKET_IN

previously sent to the controller (blue lines in the figure) contains the specifica-
tions of the flow entry to be added to the flow table.

The process of checking for expired flow table entries, showed in Figure 6.2,
is executed in a periodic fashion. The periodicity is, however, implementation
dependent, i.e., loop-time might differ depending on the OpenFlow implemen-
tation. In this cycle, the OpenFlow switch checks from time to time whether
flow entries in any flow table have expired due to hard or idle timeouts. If
any, the expired flow entries are removed and, provided that these had the flag
OFPFF_SEND_FLOW_REM set, for each removed entry an OFPT_FLOW_REMOVED mes-
sage is sent to the controller (red line in the figure) containing statistics of the
removed entry.

The last interaction showed in Figure 6.2 is initiated by the OpenFlow con-
troller when it sends an OFPT_MULTIPART_REQUEST message of type OFPMP_FLOW

136 OpenFlow-based Link Dimensioning

OpenFlow

Switch

OpenFlow

Controller

OpenFlow

Protocol

search match

in table 0
found?

install table

flow entry

yes

no

apply actions

update stats

decision

OFPT_PACKET_IN

OFPT_FLOW_MOD

incoming

packet

outgoing

packet

cycle

check expired

flow entries
any?

receive

and process

no

yes OFPT_FLOW_REMOVED

request flow

entries stats

receive

and process

OFPT_MULTIPART_

REQUEST

receive

and process

OFPT_MULTIPART_

REPLY

Figure 6.2: Messages exchange between OpenFlow controller and switch.

to the switch (green lines in the figure). This message should specify which flow
table the request targets. Upon receiving this request, the switch replies to the
controller with an OFPT_MULTIPART_REPLY message of the same type, contain-
ing current statistics of all active flow entries in the required table. The need
for sending such request is determined by the application running on top of the
controller and it is not defined by the OpenFlow specification (i.e., it is not a
periodic message exchange).

6.3. OPENFLOW-BASED APPROACH 137

6.3 OpenFlow-based Approach

In this section we detail the proposed approach for using OpenFlow traffic mea-
surements for link dimensioning purposes. As previously mentioned, OpenFlow
provides some basic per-flow metrics, namely duration and number of packets
and bytes. These are exactly the information we use from NetFlow/IPFIX style
flows for the approaches proposed in Chapters 4 and 5. Therefore, in this chap-
ter we do not propose a whole new link dimensioning approach, but rather we
propose to combine OpenFlow traffic measurements and one of the previously
proposed flow-based link dimensioning approaches. Due to its simplicity, we
decided to combine the flow-based approach from Chapter 4 with OpenFlow
measurements. Notice that flow table entries are the OpenFlow equivalent for
the flow records of Chapter 4’s flow-based approach.

Recap: the flow-based approach described in Section 4.2 estimates link

required capacity from time series built solely based on flows. The process

of building the flow-level time series assumes that the metered per-flow

bytes are uniformly distributed within the flow record’s duration. There-

fore, the only metrics needed from OpenFlow traffic measurements are the

duration of flow entries and the number of transferred bytes during their

respective lifetime in the flow table.

As shown in Figure 6.3, the proposed OpenFlow-based approach is a mix
of passive and active operations using the messages described in the previous
section. The passive portion of our approach is given by the information we
are able to collect from OFPT_FLOW_REMOVED messages (red lines in the figure).
That is, every time the controller receives an OFPT_FLOW_REMOVED message from
the switch, the statistics about the flow are processed according to the approach
described in Section 4.2.2. This is called passive portion because the approach
does not initiate any process for receiving OFPT_FLOW_REMOVED messages. In-
stead, these messages are received due to OpenFlow operation.

The active portion of the proposed approach, blue lines in Figure 6.3, con-
sists of a periodic request for statistics sent from the OpenFlow controller to the
switch. This is called active portion because the process is initiated by our ap-
proach by sending the request to the switch using the OFPT_MULTIPART_REQUEST
message with type OFPMP_FLOW. Upon receiving a reply from the switch, the
statistics of all flow entries received within the OFPT_MULTIPART_REPLY are pro-
cessed again following the approach described in Section 4.2.2. At this point, the
link dimensioning approach might request to the switch to reset the counters of
all active flow table entries. This would avoid the need of keeping track of active
entries lasting since the previous cycle so that proper differences are calculated

138 OpenFlow-based Link Dimensioning

listening

& waiting

OFPT_FLOW_REMOVED

received

send OFPT_

MULTIPART_REQUEST

OFPT_MULTIPART_

REPLY received

send OFPT_FLOW_MOD

to reset counters

process

statistics

estimate

capacity

active portion

passive portion

Figure 6.3: Proposed approach running on top of the OpenFlow controller.

(i.e., statistics from the previous request are not accounted). Such approach,
however, might significantly increase the amount of control messages between
the OpenFlow controller and the switch, since for each active flow entry in the
table, an OFPT_FLOW_MOD message with flag OFPFF_RESET_COUNTS must be sent.
Nonetheless, we do not go further on this performance issue, and assume this to
be an implementation decision. To complete the periodic cycle the link dimen-
sioning approach computes the required capacity based on all the information
passively or actively gathered from the switch. Finally the approach returns to
the initial state for a new cycle.

It is worth of mentioning again that the proposed OpenFlow-based ap-
proach for link dimensioning assumes flows to be defined as in the case
of NetFlow/IPFIX. More precisely, we define a flow with the 5-tuple as in
NetFlow v5. That is, in our OpenFlow-based approach the match fields of
flow table entries are defined by the following five fields: source and destination
IP addresses, source and destination ports and transport protocol. In the next
section we describe the experiments setup and present results of our preliminary
assessment on the quality of OpenFlow traffic measurements.

Notice that the approach proposed in this section is theoretically possible
due to operations and features specified in OpenFlow [91]. In practice, how-
ever, we observed that the quality of measurement data obtained from current
implementations of OpenFlow is the limiting factor in the deployment of this
approach. This has prevented us to validate the proposed OpenFlow-based ap-
proach. Nonetheless, in the next section, we assess the quality of OpenFlow
traffic measurements, pointing out pitfalls and potential causes for the lack of
accuracy of measured data.

6.4. OPENFLOW TRAFFIC MEASUREMENTS 139

6.4 OpenFlow Traffic Measurements

For the experiments described in this section we setup a virtualized and a physi-
cal OpenFlow environment that we used to assess the quality of traffic measure-
ments provided by OpenFlow. In this section we first describe the experiments
setup and then present results of our analysis of the quality of the traffic mea-
surements obtained from OpenFlow protocol. Finally, we present a discussion
on our findings, indicating potential reasons for the identified problems.

6.4.1 Environment Setup

In this section we detail the environment setup built to experiment on
OpenFlow. We start by describing the application we implemented on top of
Ryu OpenFlow controller. Then we detail both the physical and the virtual
and setups used to study OpenFlow. We have used these two setups so that
we were able to assess quality of OpenFlow measurements obtained from a real
OpenFlow switch (physical setup) running a vendor specific implementation,
and also from a virtual one using Open vSwitch (OVS)1, which serves as basis
for many vendor implementations of OpenFlow.

OpenFlow controller

Our implementation runs on top of Ryu2 controller. Ryu is an open source
implementation in Python of an OpenFlow controller and it is compatible to
OpenFlow 1.3. This enabled us to already build our implementation and experi-
ments using OpenFlow 1.3, an advantage compared to most of the available con-
troller implementations that are still based on OpenFlow 1.0. Ryu implements
the basic synchronization between controller and switch. Our implementation
written on top of Ryu executes the tasks shown in Figure 6.3 (except the esti-
mate capacity box). It processes the OpenFlow messages that are of our interest,
i.e., the messages described in Section 6.2.3. Our controller implementation is
used for both physical and virtual setups, which are described next, and the
code is publicly available at https://github.com/ricardoschmidt/openflow.

Physical setup

The physical setup consists of three servers and one switch. As shown in Fig-
ure 6.4 our OpenFlow controller runs on one of the servers. The server A is
used as the traffic source. The server B is used to receive the traffic sent by
A and forwarded by the OpenFlow switch. For each flow entry installed in the

1http://openvswitch.org/
2http://osrg.github.io/ryu/

140 OpenFlow-based Link Dimensioning

switch, our OpenFlow controller uses the same action set, which is to forward
flow packets from A to B. In this setup the communication only flows from A
to B and the latter simply acts as a sink to receive forwarded traffic. At A we
replay packet traces, previously captured, using the tool tcpreplay. Replaying
previously captured traces allows us to repeat the experiments multiple times
with the same input traffic. The OpenFlow switch in our physical setup is a
Pica8 Pronto 32953, running PicOS 2.3, which is based on OVS 2.0.90. PicOS
supports OpenFlow versions from 1.0 to 1.3.

An important remark is that tcpreplay gives us a summary of the replayed
traffic. This allows us to check whether the numbers of packets and bytes
received at B are the same as the actually numbers replayed at A. To check the
received traffic at B we use tcpdump. If the numbers of packets and bytes seen
at A and B match, it means that all packets were correctly forwarded by the
OpenFlow switch and, hence, we expect to see those same numbers correctly
reported in the OpenFlow metered statistics.

network nodes
Pica8

OpenFlow switch

Ryu

OpenFlow controller

(A)

(B)

traffic OpenFlow

protocol

Figure 6.4: Physical environment setup.

Virtual setup

As opposed to the physical setup, in the virtual one we do not have an actual
OpenFlow switch. The virtual setup is quite similar to the one presented in
Figure 6.4. It consists of three virtual machines (running on the same phys-
ical machine): (i) one configured as an OpenFlow switch running OVS 2.1.2;
(ii) one running our OpenFlow controller implementation; and (iii) one config-
ured to act as the traffic sender, also using tcpreplay to replay packet traces.
Running the original implementation of OVS in the virtual environment (i.e.,
without extensions or modifications) allows us to assess the quality of OpenFlow

3http://www.pica8.com/

6.4. OPENFLOW TRAFFIC MEASUREMENTS 141

measurements without being biased by implementations of a specific vendor.
Implementation decisions by different vendors, such as Pica8, might affect the
OpenFlow performance, behavior and measurements.

6.4.2 Assessing the Quality of Measurement Data

In this section we present the results of our assessment on the quality of traffic
measurements obtained from OpenFlow in both physical and virtual setups
described above. For this experiments, we selected three flows4 from a randomly
chosen trace, from location F , from the dataset described in Chapter 2. The
choice for these three specific flows was given by the fact that when replaying the
whole trace in our virtual setup, these three flows were reported with significant
amount of unaccounted packets and bytes. The three selected flows have distinct
characteristics and are summarized in Table 6.1. Note that these flows were
replayed individually and not as an aggregate.

Table 6.1: Flows used as input in our experiments.

flow duration (s) avg. rate # of packets # of bytes

1 104.64 277.12 kb/s 5056 3695617

2 300.16 73.51 kb/s 68464 4122630

3 18.79 13.89 kb/s 756 47118

The main goal of this experiment was to check whether different packet
arrival rates affect the accuracy of OpenFlow counters. Clearly, we expect that
higher packet rates might cause serious scalability problems at the OpenFlow
controller due to the higher load of control traffic between switch and controller.
Ultimately, this load might affect the quality of traffic measurements. The
bottom part of Figure 6.5 shows the rate of packets sent every second for each
of the three flows of Table 6.1, and the upper part of the same figure shows the
flow entries/records exported by OVS (OpenFlow virtual setup) and NetFlow
(for matters of comparison). Once again, to force the creation and exporting of
multiple flow entries/records in OpenFlow/NetFlow, we set hard/active timeout
to 15s and idle/inactive timeout to 3s. In the upper part of Figure 6.5, each circle
indicates a OFPT_FLOW_REMOVED message sent by the OpenFlow switch to the
controller reporting an expired flow entry or, in the case of NetFlow, an exported
flow record also due to timeout expiration. The size of the circle is determined

45-tuple flow key defined by: source and destination IP addresses, source and destination

ports and transport protocol.

142 OpenFlow-based Link Dimensioning

NF

OF

flo
w

 r
e
co

rd
s

flow 1
flow 2
flow 3

0

50

100

150

200

250

300

350

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

#
 o

f
p
a
ck

e
ts

 p
e
r

se
co

n
d

time (s)

flow 1
flow 2
flow 3

Figure 6.5: Bottom plot: number of packets transferred per second for each flow
from Table 6.1. Upper plot: flow records for each flow using OpenFlow (OF) and
NetFlow (NF). The size of circles indicates the relative amount of packets per
flow record in relation to the total amount of packets in the flow. For OpenFlow,
these numbers are an average of 20 runs per flow in the virtual setup.

by the relative number of packets accounted in that flow entry/record compared
to the whole flow.

One can hardly see any difference between exported records in OpenFlow and
NetFlow in Figure 6.5. This proves that OpenFlow can provide NetFlow-like
traffic measurements. However, although very similar, there are some subtle
inaccuracies in the measurements from OpenFlow. These can be seen in the
numbers reported in Table 6.2. Although these inaccuracies seem to be minimal,
we should keep in mind that only a single flow was sent through the OpenFlow
switch at a time. Hence, inaccuracies might become meaningful when bigger
traffic aggregates go through the switch. Notice that Table 6.2 shows the average
and standard deviation of 20 runs for each flow from Table 6.1 in our virtual
OpenFlow setup. Table 6.3 shows the average reported packets and bytes by
Pica8 switch, in our physical OpenFlow setup. An important remark from the
results in this table is that, besides byte counters being way off the actual sent
traffic, one can clearly see that packets counter reported values 100 times less
than the bytes counter.

As shown in Table 6.2, OVS reported in average a smaller amount of packets
and bytes than actually sent to the switch. The results in this table, however, do
not show that the reported statistics were quite random during the 20 runs for

6.4. OPENFLOW TRAFFIC MEASUREMENTS 143

Table 6.2: Average and standard deviation (σ) of number of packets and bytes
reported for each flow on 20 runs using the virtual setup.

flow
of packets # of bytes

avg σ avg σ

1 5029.90 43.47 3674587.86 34897.98

2 68124.90 302.65 4102194.76 18221.35

3 754.00 13.04 46990.67 809.10

Table 6.3: Average and standard deviation (σ) of number of packets and bytes
reported for each flow on 10 runs using the physical setup.

flow
of packets # of bytes

avg σ avg σ

1 42626.00 14287.64 4283439.70 1437125.24

2 96399.90 30742.13 9689768.20 3096310.14

3 523.20 104.65 53458.90 10992.58

each flow. That is, although in most of the runs the reported number of packets
and bytes was smaller than actual values in the flows, in few runs OVS surpris-
ingly reported higher numbers of measured packets and bytes. Figure 6.6 shows
how the number of reported packets varies from one execution of tcpreplay to
another in our virtual setup. Although not shown in Figure 6.6, the number of
bytes varies accordingly to the number of packets. Most of the time for flow 1
and flow 2 the reported number of packets by OVS is smaller than the actual
one, with a maximum of about 2% less packets for flow 1 (i.e., 97 packets) and
1.5% less packets for flow 2 (i.e., 910 packets). However, in many runs, for all
three flows, OpenFlow reported a higher amount of packets than actually sent.
In these cases, for flow 1 and flow 2 the reported number of packets was never
higher than 0.2%; that is 9 packets for flow 1 and 95 packets for flow 2. For
flow 3, however, most of the times OpenFlow reported around 1% more packets
than actually sent (i.e., 7 packets). Notice that results for flow 3 might look
worse than for flow 1 and flow 2, but few missing packets have more impact
in flow 3 due to its smaller actual size as compared to the other two flows (see
Table 6.1). For example, flow 3 misses up to 2.6% of packets, which actually
accounts for 20 packets only. An important observation is that numbers ex-
ported by OVS are quite random and in a second set of 20 runs of tcpreplay,
we can expect number of exported packets to be completely different than what
is shown in Figure 6.6. Another important observation from the results in Fig-

144 OpenFlow-based Link Dimensioning

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

re
la

tiv
e
 n

u
m

b
e
r

o
f
p
a
ck

e
ts

 (
%

)

tcpreplay runs

flow 1
flow 2
flow 3

(a) Relative difference between actual number of packets in the flows (normalized to zero)

and the reported number of packets by OVS.

 4940

 4960

 4980

 5000

 5020

 5040

 5060

 5080

 1 3 5 7 9 11 13 15 17 19

a
b
so

lu
te

 n
u
m

b
e
r

o
f
p
a
ck

e
ts

tcpreplay runs

flow 1
 67400

 67600

 67800

 68000

 68200

 68400

 68600

 1 3 5 7 9 11 13 15 17 19

tcpreplay runs

flow 2
 730

 735

 740

 745

 750

 755

 760

 765

 1 3 5 7 9 11 13 15 17 19

tcpreplay runs

flow 3

(b) Absolute difference between actual number of packets in the flows and the reported

number of metered packets by OpenFlow. The dashed lines show the actual number of

packets for each flow.

Figure 6.6: Varying number of reported packets per flow across 20 runs of
tcpreplay in the virtual setup.

ure 6.6 is that among all runs for all three flows (60 in total), only at run 7 the
number of metered packets by OpenFlow was the same as the actual number of
sent packets of one flow (i.e., flow 3).

6.4.3 Discussion

The problems for accounting less packets or bytes than actually sent to the
OVS or Pica8 Pronto switch can arise from multiple reasons. First, high rates
of packet arrivals might overload the controller or even the link connecting the

6.4. OPENFLOW TRAFFIC MEASUREMENTS 145

controller to the switch. This way OFPT_PACKET_IN messages might be lost due
to software or hardware limitations. Packet loss might also be result of buffer
overflow in the switch. At higher packets arrival rate, the switch might run out
of space to store information about packets that triggered OFPT_PACKET_INmes-
sages to the controller. This way, once the controller returns a OFPT_FLOW_MOD

with instructions of what to do with the buffered packet, the switch might not
have information about that packet anymore. A second reason for accounting
less packets than actually sent might be related to implementation issues. The
OpenFlow controller should be able to handle many OFPT_PACKET_IN messages
arriving almost simultaneously. If it is not the case, the controller might drop
such messages due to overload. The OpenFlow switch should also be able to
handle many almost simultaneously OFPT_FLOW_MOD messages sent by the con-
troller, install the new flow entries and account for the buffered packets.

OVS exploits parallelism and this might create situations in which an arriv-
ing packet is not accounted or even accounted twice due to lack of proper syn-
chronization between parallel tasks. This can also explain situations in which
OpenFlow reports more packets than actually sent.

Clearly, the language in which the OpenFlow controller is implemented can
also determine its performance limitations. We have used a Python imple-
mentation of Ryu controller. Controller performance can be improved if it is
implemented in more efficient language such as Java or C.

Differences or inaccuracies on flow duration and delay on “exporting” flow
records can also be a result of the way OpenFlow is implemented. Both OVS and
PicOS implement cycles for checking expired flows and for updating counters.
For example, in OVS the cycle for checking expired flows due to hard or idle
timeouts is performed every 2 seconds. Therefore, expired flows might have an
additional duration of up to 2 seconds. According to the OVS documentation,
the cycle for updating counters is performed every 1 second. That is, the latest
packet(s) that arrived and matched with a flow entry might not be accounted if
the hard timeout of its respective flow entry expires (and the entry is removed)
before the next cycle for updating statistics is triggered.

We have observed another problem when replaying a whole 15-minute trace
from our dataset in the physical setup. On having several hundreds of flow
entries to manage, the OpenFlow switch seems to get lost in the measurement
process and reports many zeroed flows. That is, flow records reported with
counters set to zero. This problem only appears in the physical setup and if the
number of simultaneously active flow records is “high enough” (note that a“high
number” in our experiments was only few hundreds of simultaneously active flow
records). All zeroed flows we have observed are flows that actually consist of
a single packet. It is not easy to determine what might be the cause of this
problem, but this is likely to be a result from high packet arrival rate combined

146 OpenFlow-based Link Dimensioning

with the low priority given to the traffic measurement operations. That is,
packets are correctly forwarded, but they might not be accounted because of
overload in the OpenFlow switch.

6.5 Concluding Remarks

The growing interest from academia and industry on SDN motivated us to inves-
tigate the feasibility of deploying our flow-based link dimensioning approach in
an OpenFlow-enabled network. That’s because, among many other operations,
OpenFlow meters some basic traffic statistics that suffice for link dimension-
ing tasks. In this chapter we proposed an approach to collect traffic measure-
ments from the OpenFlow switch solely using messages defined by the OpenFlow
protocol. This approach is a mix of active and passive techniques, where the
OpenFlow controller (i) awaits for messages containing measurement data to be
sent by the switch from time to time or (ii) explicitly requests for measurement
data every time the bandwidth estimation is to be calculated. The flexibility
of flow definition in OpenFlow allows us to define flows in the same way these
are defined in our flow-based link dimensioning approaches from Chapters 4
and 5. That is, in theory OpenFlow can provide NetFlow/IPFIX style traffic
measurements. Therefore, in this chapter we did not present a whole new way
to compute traffic statistics required by dimensioning formula of Equation (1.2),
but we propose to investigate the application of OpenFlow measurement data
to one of our proposed flow-based approaches.

In this chapter we assessed the quality of OpenFlow per-flow traffic measure-
ments and, although possible in theory, we have identified many problems with
the accuracy of such measurements. The measurement operation of recently re-
leased OVS 2.1.2 and PicOS 2.3 (Pica8 Pronto 3295 switch) proved to be quite
inaccurate and erratic. In both cases, OpenFlow did not provide us with accu-
rate traffic measurements even when traffic load was absurdly low, e.g., a single
500 kb/s flow. However, we observed that traffic was mostly correctly forwarded
by the OpenFlow switch, which means that only the measurement operation was
not performing as expected. This leads us to believe that measurement tasks
are set as low priority at OpenFlow switch (i.e., job priority), resulting in poor
quality measurements. Moreover, additional inaccuracies on flow statistics seem
to result from implementation decisions that can vary from vendor to vendor.
For example, for an unknown reason to us, PicOS does not measure number
of packets per flow, but estimates it from bytes counters. In OVS, as another
example, the cycles for checking expired flows and for updating counters can
affect the accuracy of, respectively, flow duration and packets/bytes counters.

6.5. CONCLUDING REMARKS 147

Most of these problems can apparently be alleviated by improving OpenFlow
implementations towards better quality measurements. It seems to be the case
that OpenFlow community is not yet focused on making traffic measurement
operations efficient and accurate. However, the growing adoption of OpenFlow
will demand for such improvements. By the way, it is a fact that even well
established technologies for traffic measurement also have problems, as reported
in [106] for the case of SNMP and in [57] for the case of NetFlow. Nonetheless,
there are few recent works, such as [85], that started to investigate how to
improve the quality of OpenFlow measurements.

As further research, we plan to investigate even further the causes of inac-
curacies in traffic measurements and, if possible, propose ways to correct them.
Another clear next step is to implement a proof-of-concept of the OpenFlow-
based link dimensioning approach proposed in Section 6.3 using OpenFlow mea-
surement data and the flow-based approaches from Chapters 4 and 5. Our initial
expectation is, however, that the link dimensioning approaches will call for fur-
ther enhancements to account for the poor quality of measurement data from
current OpenFlow implementation.

So long, and thanks for all the fish.

— Douglas Adams
In: The Hitchhiker’s Guide to the Galaxy series.

CHAPTER 7

Conclusions

In this last chapter we set out the main findings of the research in this the-

sis, compare the proposed approaches for link dimensioning, and present

directions for future research.

Chapter 2:

Measurements

Chapter 3:

sFlow

Chapter 4&5:

NetFlow/IPFIX

Chapter 6:

OpenFlow

Chapter 7:

Conclusions

The organization of this chapter is as follows:

• Section 7.1 summarizes the research presented in this thesis.

• Section 7.2 sets out the main conclusions of this thesis according to
their respective research questions.

• Section 7.3 positions the proposed approaches for link dimensioning
according to their respective easiness of use and accuracy.

• Section 7.4 summarizes the contributions of this thesis per chapter.

• Section 7.5 discusses directions for further research.

7.1 Overview

The growing traffic demands combined with the trend towards virtualization of
services and networks has widened the scope of link dimensioning approaches.
Scenarios envisioned for the Future Internet demand more precise and intelligent
link dimensioning to help (i) ensuring optimal use of bandwidth resources for
multiple tenants and across multiple domains, and (ii) providing desired QoS

150 Conclusions

levels. On the one hand, the straightforward and widely used SNMP-based rules
of thumb for link over-provisioning are easy-to-use, but not very precise, often
resulting in a waste of link resources due to excessive over-estimation of required
capacity. On the other hand, more advanced and accurate approaches for link
dimensioning rely on continuous packet capturing and, hence, are difficult to
use due to financial (i.e., expensive devices) and operational (i.e., not scalable
to measured traffic) constraints. This motivated us to investigate and develop
alternative approaches for link dimensioning with the properties of being – al-
most – as easy-to-use as SNMP-based rules of thumb and – almost – as accurate
as packet-based approaches such as [109]. Therefore, we defined the goal of this
thesis as

How can we accurately estimate required link capacity, for means of link

dimensioning, with easy-to-use traffic measurement technologies?

Aiming at ease of use and accuracy, in this thesis we proposed and an-
alyzed four link dimensioning approaches. These approaches combine traffic
measurement technologies that are largely found at network operators with the
dimensioning formula proposed and validated in [109]. By using largely avail-
able technologies, we overcome the financial challenge of demanding expensive
hardware/software for traffic measurements (as compared to continuous packet
capturing). Initially, we performed an extensive study on properties of traffic
from our measurements dataset. This study aimed at ensuring that current net-
work traffic is still Gaussian distributed, which is one of the requirements of the
adopted dimensioning formula from [109] originally proposed in 2006. Then we
used our dataset to validate each of the proposed link dimensioning approaches
in this thesis. In the next section we summarize the key findings of this thesis.

7.2 Main Conclusions

In this section we describe the main conclusions of this thesis according to their
respective research questions defined in Chapter 1. In the first part of this thesis,
the research question RQ-1, defined as

[. . .] is current Internet traffic still Gaussian?

was addressed in Chapter 2. We have demonstrated that the emergence of
new applications in the past years that reshaped users behavior, such as video
streaming, online storage and social network services, has not significantly im-
pacted on traffic Gaussianity fit. This allowed us to safely use the dimensioning
formula from [109], which was built upon the assumption of traffic Gaussianity.

7.2. MAIN CONCLUSIONS 151

We also showed that, unlikely stated by previous works, it is sometimes safer
to relate traffic Gaussianity to the measured traffic rate instead of the number
of simultaneously active hosts. However, we demonstrated that, even among
several thousands of simultaneously active hosts, very few hosts might have a
negative effect on Gaussianity fit by sending a high volume of data with high
rates using a single application/port.

In the second part of this thesis we proposed link dimensioning approaches
that use traffic measurements technologies largely found at operator’s infras-
tructures, namely sFlow, NetFlow/IPFIX and OpenFlow. Chapter 3 addressed
the research question RQ-2, defined as

[. . .] how can we estimate traffic average rate and variance from sampled

packets?

We proposed and validated approaches to calculate traffic variance (ultimately
used for estimating required capacity) from sampled data obtained from mea-
surement technologies employing different packet sampling strategies. We vali-
dated the accuracy of our proposed approaches with data from three sampling
strategies: Bernoulli, n-in-N and the specific strategy implemented by the sFlow
tool. Besides being widely implemented by traffic measurement tools, Bernoulli
and n-in-N are also defined in [119]. We demonstrated that for sampled data
to be useful for link dimensioning, independently of the sampling strategy, a
sampling rate should be chosen taking into consideration both the timescale of
interest and the volume of traffic on the monitored link. From our measure-
ments dataset we could not conclude to which extent traffic throughput plays a
role on the sampling rate choice. Nonetheless, it is clear that higher sampling
rates are mostly required at smaller timescales while lower sampling rates are
mostly required at larger timescales, as shown in Figure 3.14. Another problem
we addressed was the aggregation of sampled packets at the sFlow agent, which
results on loss of individual packet timestamps. We showed that in the case of
sFlow, the buffer size at the sFlow agent and the aggregation of sampled packets
on the exporting process do not invalidate sampled data for link dimensioning
given that a correct sampling rate is set. For example, for traces in our dataset
with average rates 1 Gb/s, traffic sampled 1:100 was enough to estimate required
capacity at timescales as low as 100ms using any of the three tested sampling
algorithms.

The research question RQ-3 defined as

[. . .] how can we estimate traffic average rate and variance without infor-

mation on individual packets?

was addressed in Chapters 4 and 5. A purely flow-based approach for link di-
mensioning was proposed in Chapter 4. We demonstrated that this approach

152 Conclusions

can account for the lack of packet-level information and estimate required link
capacity solely from flows at timescales around 1s. In Chapter 5, we proposed
a hybrid approach in which the flow-based approach is combined with analyt-
ical models accounting for the packet-level dynamics within flows. Extensive
validation experiments proved that it is possible to overcome the data aggrega-
tion problem in flows and, ultimately, obtain accurate estimations of required
capacity at timescales as low as 1ms.

Lastly, in Chapter 6 we addressed the research question RQ-4 defined as

[. . .] can we use OpenFlow per-flow traffic measurements for link dimen-

sioning purposes?

We proposed an approach that uses the OpenFlow protocol to retrieve traffic
measurements from the switch in a passive and active fashion. In theory such
approach works. In practice, however, the lack of accuracy of OpenFlow traffic
measurements impair the use of such measurements for link dimensioning pur-
poses. From results collected in experiments with a virtual and with a physical
OpenFlow setup, we assume that the lack of accuracy of per-flow measurements
in OpenFlow might result from, among others: (i) implementation-specific de-
cisions such as periodical cycles to check expiration of flow entries and update
per-flow statistics; and (ii) scalability problems, such as capability of controller
and switch to handle high packet arrival rates and high number of simultane-
ously active flows. Therefore, to achieve good quality traffic measurements in
OpenFlow, we first need implementations of the protocol that give the right
priority on implementing and executing measurement-related tasks.

7.3 Positioning of the Proposed Approaches

In Chapter 1, Figure 1.4 positioned the goal of this thesis in relation to the easy-
to-use SNMP-based rules of thumb for link over-provisioning and the accurate
packet-based approach for link dimensioning from [109]. Figure 1.4 indicated
that our goal was to find a tradeoff between ease of use and accuracy. In this
section, with a purely qualitative analysis, we position each of our proposed
approaches for link dimensioning in the same plot, now depicted in Figure 7.1.
Note that this figure does not capture the dimension of timescale in which
estimations of required capacity would be done. Next, we explain the reason
behind the positioning of each approach.

With the sFlow-based approach proposed in Chapter 3 we obtained very
accurate estimations of required capacity, sometimes as accurate as the packet-
based approach. Operational-wise, the sFlow-based approach, among all pro-
posed approaches in this thesis, is likely the one that can be the easiest to use,

7.3. POSITIONING OF THE PROPOSED APPROACHES 153

E
a
s
e
-
o
f-
u
s
e

Accuracy

SNMP-based

rules of thumb

Packet-based

from [109]

Ch. 3

sFlow-

based

Ch. 4

Pure flow-

based

Ch. 5

Flow-based

model

Ch. 6

OpenFlow-

based

Figure 7.1: Position of the proposed link dimensioning approaches in this thesis.

but also the most difficult. What mainly defines the ease of use and accuracy in
the sFlow-based approach is the chosen sampling rate. The lower the sampling
rate the more scalable is the approach (easy-to-use), but it also becomes less
accurate due to the small number of sampled packets. At the cost of lower scal-
ability, higher sampling rates provide more measured data and, consequently,
a better overview of traffic, which culminates in more accurate estimations of
required capacity. There is, therefore, a trade-off between ease-of-use and ac-
curacy mostly determined by the chosen sampling rate, and this justifies the
position of the sFlow-based approach in Figure 7.1. Moreover, the fact that
sFlow is largely available in today’s network devices adds up to the ease of
using the proposed sFlow-based approach for link dimensioning.

In Chapter 4 we proposed a flow-based link dimensioning approach that uses
solely flows (NetFlow v5 style) to estimate required link capacity. Besides being
widely available in network devices, flow measurements provide an aggregated
view of the observed traffic and, hence, are more operationally scalable than
plain packet capturing. Even if the network device does not have an embedded
flow exporter, it is possible to use one of the many available pieces of software
that provide NetFlow-like traffic measurements. The scalability of flows comes,
however, at the cost of information loss due to the data aggregation. With
(naive) general assumptions about traffic within flows, the approach proposed
in Chapter 4 is able to accurately estimate required capacity at higher timescales
only. This problem can be alleviated by manipulating the flows timeouts. By

154 Conclusions

reducing the timeouts, we can better capture short-term traffic fluctuations and,
hence, estimate required capacity at smaller timescales. However, short timeouts
are not typically deployed by operators. That is, on the one hand, setting shorter
timeouts increases accuracy, but reduces the approach’s ease of use. Clearly, on
the other hand, using higher timeouts commonly set by operators (typically the
default settings of the measurement technology) might reduce the approach’s
accuracy, but increases its ease of use. This trade-off added to the applicability
limitation to higher timescales justifies Chapter 4’s position in Figure 7.1.

The link dimensioning approach proposed in Chapter 5 aimed at overcoming
the problem of the approach from Chapter 4. That is, how to accurately es-
timate required capacity at small timescales by using flow-level measurements.
We combined a flow-based approach with an analytical model that compen-
sates for the lower granularity of flow data, even when setting longer timeouts.
Undoubtably, this model helped to improve the accuracy of the estimations at
smaller timescales. However, the model requires fitting of parameters that can
only be done using packet-level captures. Although only sporadically needed,
these captures impose the need of an extra measurement effort as compared
to the approach from Chapter 4. Therefore, the hybrid flow-based approach
from Chapter 5 can be very accurate, sometimes as much as the packet-based
approach, but scalability is impaired by the requirement of packet-level mea-
surements, and this explains this approach’s position in Figure 7.1.

Finally, in Chapter 6 we proposed an OpenFlow-based approach for link
dimensioning. Many of the characteristics of the OpenFlow-based approach
are very similar to the flow-based approach from Chapter 4, since the former
combines the latter with OpenFlow per-flow traffic measurements. Note that
the positioning of the OpenFlow-based approach here considers that in theory
OpenFlow would be able to deliver per-flow measurements in a NetFlow/IPFIX
style without the accuracy problems we presented in Chapter 6. If OpenFlow
is able to deliver traffic measurements correctly, the accuracy of the estimations
of required capacity will be very close to those obtained with the flow-based
approach from Chapter 4. Although the adoption of OpenFlow is increasing, it
is currently not as widely deployed as NetFlow and sFlow, or other variants of
these. This low availability makes it more difficult to use than, e.g., the pure
flow-based approach or the sFlow-based approach.

All the proposed approaches have pros and cons. Drawbacks can mostly be
alleviated by setting measurement parameters, such as sampling rate in sFlow
and timeouts in NetFlow. However, one will always need to find a compro-
mise between the desired accuracy and the ease of using of the adopted link
dimensioning approach.

7.4. SUMMARY OF CONTRIBUTIONS 155

7.4 Summary of Contributions

In this section we list the main contributions of this thesis per chapter.

Chapter 2 – Datasets and Traffic Characteristics

• Demonstrates that it is safer to link Gaussianity fit of traffic to aggregated
rate than to the number of active users generating traffic.

• Proves that the evolution of traffic led by the advent of new online appli-
cations and services, has not influenced Gaussianity fit of traffic.

• Reveals that the behavior of very few hosts and applications can negatively
impact Gaussianity fit of traffic.

• Provides a public dataset consisting of anonymized packet traces of mea-
surements performed by us (locations A, B and C of Table 2.1). The data
comprises more than 48 hours of packet capturing carried out in 2011
and 2012. The traces are available at http://www.simpleweb.org/wiki/
Traces.

Chapter 3 – sFlow-based Link Dimensioning

• Demonstrates that it is possible to use sampled packets for link dimension-
ing, giving accurate estimations of required capacity even at millisecond
timescales.

• Reveals that, for link dimensioning purposes, the chosen sampling rate
must take into consideration the traffic rate and the timescale of interest,
and not only the link capacity, as suggested by the sFlow community.

• Evaluates the impacts of sFlow operations on the quality of measurements
and their subsequent use for link dimensioning.

• Provides three packet sampling implementations that emulate Bernoulli,
n-in-N and sFlow sampling algorithms. These implementations are public,
under GPL v2 license1, and can be downloaded at https://github.com/
ricardoschmidt/sampling.

1http://www.gnu.org/licenses/gpl-2.0.html

156 Conclusions

Chapter 4 – Pure Flow-based Link Dimensioning

• Demonstrates the feasibility of estimating required link capacity at
timescales around 1s by exclusively using flow-level traffic measurements
(NetFlow v5 style flows).

• Provides an implementation of the proposed approach for creating flow-
level time series, which can be later used for estimating traffic variance or
other statistics. This implementations is public, under GPL v2 license, and
can be downloaded at https://github.com/ricardoschmidt/flow-ts.

Chapter 5 – Hybrid Flow-based Link Dimensioning

• Extends the flow-level traffic models from [112] to better estimate traffic
variance from flow-level measurements (NetFlow v5 style).

• Introduces packet-level models that account for packet behavior within
flows.

• Demonstrates that by combining flow-level and packet-level models, accu-
rate estimations of required capacity can be obtained even at millisecond
timescales.

Chapter 6 – OpenFlow-based Link Dimensioning

• Proposes an approach to passively and actively retrieve traffic measure-
ments from the OpenFlow switch using the OpenFlow protocol, for pur-
poses of link dimensioning.

• Demonstrates that the quality of per-flow traffic measurements obtained
from current implementations of OpenFlow lack accuracy required by link
dimensioning.

• Provides an implementation of the OpenFlow controller used to retrieve
measurement data from the OpenFlow switch, which can be later used
for link dimensioning or other operations. This implementation is public,
under GPL v2 license, and can be downloaded at https://github.com/
ricardoschmidt/openflow.

7.5. FUTURE RESEARCH 157

7.5 Future Research

In this section we set out research directions to extend the work presented in
this thesis.

• Further research can be conducted aiming at improving the accuracy of the
proposed approaches for link dimensioning. In Chapter 3, for example, one
could explore the use of additional statistics exported by the sFlow tool to
support even better estimations of traffic average rate and variance from
sampled data. In Chapters 4 and 5, it would be important to investigate to
which extent sampled NetFlow would reduce the accuracy of the proposed
link dimensioning and, if significant, how we could overcome this problem.

• In this thesis we investigated and developed approaches for link dimen-
sioning. An obvious next step would be to implement and deploy these
proposed approaches in actual network management applications, in ex-
perimental and/or production networks. Example of applications are:

– Energy-aware traffic engineering. There are many works proposing
energy-aware solutions, and they could certainly profit from link di-
mensioning. For example, in [50], we exploited the opportunistic
use of MPLS backup paths to distribute traffic across the network
and save energy by putting extra links to sleep. In [20] the authors
proposed an energy-aware approach to periodically redistribute IP
traffic within a core network, by setting idle line cards into sleep
mode. These approaches usually (re)allocate link resources and redi-
rect traffic based on average link utilization and, therefore, might
end up impairing QoS. Link dimensioning can support the proper
reallocation of resources for redirected traffic. Ultimately, gains on
energy savings might be limited due to higher bandwidth require-
ments imposed by the link dimensioning as compared to average link
utilization metrics. Future work in this area can assess the pros and
cons of employing link dimensioning on approaches for energy-aware
traffic engineering.

– Data center networks. Data center networks are said to be trans-
parent to tenants, who hire services based on computational and
storage resources to be used and are charged on a time-of-use basis.
However, data center networks are typically highly oversubscribed,
which might create bottlenecks between the topology layers [11]. Ul-
timately, this might result in longer completion time of tenants’ jobs,
elevating costs of hired resources. Past works proposed to include
bandwidth as part of tenants resource request and, consequently, as

158 Conclusions

part of resources allocation algorithms within the data centers. To
the best of our knowledge, none of the past works have explored how
link dimensioning can support resources management operations. So,
as we also envisioned in [47], a topic for further research is to investi-
gate how link dimensioning can assist allocation of link resources in
data centers, aiming at optimal use of the data center network and
fair pricing to tenants.

• OpenFlow is a very recent technology and there is still lots of room for
improvement. In this thesis we provided a first investigation on the quality
of per-flow traffic measurements in OpenFlow. We showed that although
in theory possible by the OpenFlow standard [91], current implementa-
tions of OpenFlow do not provide measurement data of enough quality
for link dimensioning purposes. These problems seem to be mainly caused
by implementation decisions that potentially vary from vendor to vendor.
It would be of great value to perform a more comprehensive study on the
quality of OpenFlow traffic measurements, comparing implementations of
different vendors. Such study would certainly pave the way for further
improvements on OpenFlow, and network management could ultimately
rely on traffic measurements obtained via this technology.

• The scenario of the future Internet, as detailed in Chapter 1, brings many
multidisciplinary challenges. In this thesis we addressed the link dimen-
sioning operations that can help on decisions for allocation of bandwidth
resources. Other areas certainly deserve attention as well. For example,
research should be conducted to explore security-related problems that
might arise with virtualization of services and networks. Another direc-
tion that deserves attention and further investigation is on the ethical
aspects of the Internet ecosystems, mainly concerning end users privacy
and their relationship with the Internet big players.

APPENDIX A

Estimating Variance from Sampled Packets

In this appendix we show the derivation of our proposed formulas for estimating
the traffic variance from sampled packets, as presented in Section 3.4.

A.1 Estimating Traffic Variance with Bernoulli
Sampling

Let µ and v(T) be the mean and the variance of the observed traffic per time
interval before sampling. Under the assumptions given in Section 3.4.1, it holds

µ = E[P]E[S] , (A.1)

v(T) = E[P]V ar[S] + E[S]2V ar[P] . (A.2)

Let µ� and v�(T) be the mean and the variance of the sampled traffic per time
interval. The “trick” with the zero-size packets described in Section 3.4.1 gives

µ� = E[P]E[S�] (A.3)

= pE[P]E[S] = pµ , (A.4)

v�(T) = E[P]V ar[S�] + E[S�]2V ar[P] (A.5)

= p2E[P]V ar[S] +

�
1

p
− 1

�
E[S2] + p2E[S]2V ar[P] (A.6)

= p2
�
v(T) +

�
1

p
− 1

�
E[P]E[S2]

�
. (A.7)

The last equation can be solved for v(T). With r = 1/p and vest(T) = r2v�(T),
we obtain the desired estimation of v(T) shown in Equation (3.7).

160 ESTIMATING VARIANCE FROM SAMPLED PACKETS

A.2 Estimating Traffic Variance with 1-in-N and
sFlow Sampling

Again, let µ and v(T) be the mean and the variance of the observed traffic. As
explained in Section 3.4.2, we assume that the number P �

i of sampled packets in
time interval i is i.i.d. as P � with P � = P/N , where P is the number of packets
per time interval before sampling. Thus, the mean µ� and the variance v�(T) of
the sampled traffic per time interval are

µ� = E[P �]E[S] (A.8)

=
1

N
E[P]E[S] =

µ

N
, (A.9)

v�(T) = E[P �]V ar[S] + E[S]2V ar[P �] (A.10)

=
1

N
E[P]V ar[S] +

1

N2
E[S]2V ar[P] (A.11)

=
1

N2
(v(T) + (N − 1)E[P]V ar[S]) . (A.12)

By solving for v(T) and using r = N and vest(T) = r2v�(T), we obtain the
desired estimation of v(T) shown in Equation (3.9).

APPENDIX B

Variance from flows with constant duration

This appendix shows the derivation of the formula to estimate traffic variance
from flows assuming constant flow durations (Equation (5.3)). From the ba-
sic variance formula Equation (5.1), the derivation of the variance formula for
constant flows duration D is as follows:

υ(T) = λr2
�
2T

� T

0

x(1− FD(x))dx− δ

� T

0

x2fDr (x)dx+ δT 2(1− FDr (T))

�

Splitting the equation above in some parts, we have:

A =

� T

0

x(1− FD(x)dx

B =

� T

0

x2FDr (x)dx

C = 1− FDr (T)

FD(x) =

�
0 , if T < c
1 , if T ≥ c

Solving A, B and C individually, we obtain:

A =

� T

0

xdx−
� T

0

xFD(x)dx

=

�
T 2

2
, if T < c

T 2

2
−
�

T 2

2
− c2

2

�
, if T ≥ c

B =
1

δ

� T

0

x2(1− FD(x))dx

=

�
1

δ
T 3

3
, if T < c

1

δ

�
T 3

3
−
�

T 2

2
− c3

3

��
= 1

δ
c3

3
, if T ≥ c

162 VARIANCE FROM FLOWS WITH CONSTANT DURATION

C = 1− FDr (T)

= 1−
� T

0

FDr (x)dx

= 1− 1

δ

� T

0

(1− FD(x))dx

=

�
1− T

δ , if T < c
1− c

δ , if T ≥ c

For T < c, υ(T) becomes:

υ(T) = λr2(T 3 − T 3

3
+ δT 2 − T 3)

= ρr

�
T 2 − T 3

3δ

�

And for T ≥ c, given that c = δ, υ(T) becomes:

υ(T) = λr2
�
2T

c2

2
− c3

3
+ δT 2 − T 2c

�

= ρr

�
T
c2

δ
− c3

3
+ δT 2 − T 2c

�

= ρr

�
T δ − δ2

3

�

Finally, the variance υ(T) becomes (Equation (5.3)):

υ(T) =

ρr

�
T 2 − T 3

3δ

�
, if T < δ

ρr
�
T δ − δ2

3

�
, if T ≥ δ

APPENDIX C

Flow models for different packet arrival
processes

In this appendix we show the derivation of our proposed formulas for the packet
correction factor to support flow-based link dimensioning, as presented in Sec-
tion 5.

C.1 Flow model with poisson packet arrival

In this section we prove Equation (5.6) under the assumption that packet arrivals
inside a flow are Poisson with rate µ and have arbitrary sizes i.i.d. like S.

Let T be the aggregation timescale. Obviously, if we observe the active
traffic flows during an interval of length T , we will mostly only see fragments of
those flows because most flows start or end outside that interval. Let L be the
total length of flow fragments observed in that interval. Since packet arrivals
are Poisson, the p.m.f. of the number of packets Kl arriving during that interval
for L = l is (neglecting packet transmission times)

P[Kl = k] =
(µl)k

k!
e−µl.

Let Si be the size of the ith packet, i.i.d. like S. The total traffic Al arriving in
that arrival is then

Al =
Kl�

i=1

Si

with Laplace-Stieltjes transform (LST)

LAl(q) = E[e−q
�Kl

i=1 Si]

=
∞�

k=0

(µt)k

k!
e−µl

�
E[e−qS]

�k

= e−µl(1−E[e−qS
]).

164
FLOW MODELS FOR DIFFERENT PACKET ARRIVAL

PROCESSES

Let g(l) be the p.d.f. of L, with LST G(·). The LST of the total amount of
traffic A(T) arriving in that interval is then

LA(T)(q) =

� ∞

l=0

g(l)LAl(q)dl

=

� ∞

l=0

g(l)e−µl(1−E[e−qS
])dl

= G(−µ(1− E[e−qS])).

Hence, the first and second moment of A(T) are given by

E[A(T)] = − d

dq
G(−µ(1− E[e−qS]))

����
q=0

(C.1)

E[A(T)2] =
d2

dq
G(−µ(1− E[e−qS]))

����
q=0

(C.2)

By applying basic differentiation rules to Equation (C.1) and using the identities

− d

dx
G(x)

����
x=0

= E[L] and − d

dx
E[e−qS]

����
x=0

= E[S]

we obtain

E[A(T)] = µE[S]E[L].

Similarly, Equation (C.2) gives

E[A(T)2] = µE[S2]E[L] + µ2E[S]2E[L2].

Hence, the variance of A(T) is

Var[A(T)] = µE[S2]E[L] + µ2E[S]2E[L2]− µ2E[S]2E[L]2.

Noting that the difference µ2E[S]2E[L2] − µ2E[S]2E[L]2 is simply the variance
vflow(T) of the traffic in the constant-traffic-rate model in Equation (5.1), in-
troduced in Section 5.2, it holds

Var[A(T)] = vflow(T) + µE[S2]E[L].

Using µE[S]E[L] = ρT , where ρ is the mean of the total traffic throughput, we
finally obtain Equation (5.6).

C.2. FLOW MODEL WITH BURSTY PACKET ARRIVAL 165

C.2 Flow model with bursty packet arrival

Let P the number of packets in a burst. Since P[P = i] = (1 − p)i−1p, the
mean and variance of P are E[P] = 1− p and Var[P] = (1− p)/p2, respectively.
The byte size of the burst can be expressed as a sum of a random number of
random variables: S� =

�P
i=1

Si. Under the assumption of Si i.i.d. like S and
the independence of Si and P , it is known for such sums that

E[S�] = E[P]E[S],
Var[S�] = E[P]Var[S] + E[S]2Var[P],

which allows to calculate E[S�2].

Bibliography

[1] EU FP7 Mobile Cloud Networking. http://www.mobile-cloud-networking.eu/.
Online. Accessed Jan. 2014.

[2] EU FP7 UniverSelf (257513). http://www.univerself-project.eu/. Online. Ac-
cessed Jan. 2014.

[3] Iperf2. http://iperf.sourceforge.net/. Online. Accessed Feb. 2014.

[4] Multi Router Traffic Grapher. http://oss.oetiker.ch/mrtg/. Online. Accessed
Dec. 2013.

[5] nfdump. http://nfdump.sourceforge.net/. Online. Accessed Feb. 2014.

[6] Round Robin Database Tool. http://oss.oetiker.ch/rrdtool/. Online. Ac-
cessed Aug. 2014.

[7] tcpdump. http://www.tcpdump.org/. Online. Accessed Feb. 2014.

[8] Akyildiz, I. F., Lee, A., Wang, P., Luo, M., and Chou, W. 2014. A roadmap
for traffic engineering in SDN-OpenFlow networks. Elsevier Computer Networks 71,
1–30.

[9] Anjum, B., Perros, H., Mountrouidou, X., and Kontovasilis, K. 2011.
Bandwidth allocation under end-to-end percentile delay bounds. International Jour-
nal of Network Management 21, 5, 536–547.

[10] Barakat, C., Thiran, P., Iannaccone, G., Diot, C., and Owezarski, P.
2003. Modeling Internet backbone traffic at the flow level. IEEE Transactions on
Signal Processing 51, 8, 1–12.

[11] Benson, T., Akella, A., and Maltz, D. 2010. Network Traffic Characteristics
of Data Centers in the Wild. In Proceedings of the 10th ACM SIGCOMM Internet
Measurement Conference. IMC’10. 267–280.

[12] Bonald, T., Oliver, P., and Roberts, J. 2003. Dimensioning high speed
IP access networks. In Proceedings of the 8th International Teletraffic Congress.
ITC’03. 241–251.

[13] Brauckhoff, D., Tellenbach, B., Wagner, A., May, M., and Lakhina, A.
2006. Impact of Packet Sampling on Anomaly Detection Metrics. In Proceedings of
the 6th ACM SIGCOMM Internet Measurement Conference. IMC’06. 159–164.

168 BIBLIOGRAPHY

[14] Broido, A., Hyun, Y., Gao, R., and kc claffy. 2004. Their Share: Diversity
and Disparity in IP Traffic. In Proceedings of the 5th International Passive and
Active Network Measurement Workshop. PAM’04. 113–125.

[15] Brown, B. M. and Hettmansperger, T. P. 1996. Normal Scores, Normal Plots
and Tests for Normality. Journal of the American Statistical Association 91, 436,
1668–1675.

[16] Cai, Z., Cox, A. L., and Ng, T. S. E. 2011. Maestro: Balancing Fairness,
Latency and Throughput in the OpenFlow Control Plane. Tech. Rep. TR11-07,
Rice University.

[17] CAIDA. The CAIDA UCSD Anonymized Internet Traces 2011 – 2011-05-
19, 2011-07-21, 2011-12-22. http://www.caida.org/data/passive/passive_2011_
dataset.xml. Online. Accessed Dec. 2013.

[18] CAIDA. The CAIDA UCSD Anonymized Internet Traces 2012 – 2012-01-19,
2012-02-16. http://www.caida.org/data/passive/passive_2012_dataset.xml.
Online. Accessed Dec. 2013.

[19] CERT/NetSA. YAF – Yet Another Flowmeter. http://tools.netsa.cert.

org/yaf/. Online. Accessed Feb. 2014.

[20] Charalambides, M., Tuncer, D., Mamatas, L., and Pavlou, G. 2013.
Energy-Aware Adaptive Network Resource Management. In Proceedings of the
IFIP/IEEE International Symposium on Integrated Network Management. IM’13.
369–377.

[21] Choi, B.-Y., Park, J., and Zhang, Z.-L. 2003. Adaptive Random Sampling
for Traffic Load Measurement. In Proceedings of the 38th IEEE International Con-
ference on Communications. ICC’03. 1552–1556.

[22] Choi, B.-Y., Park, J., and Zhang, Z.-L. 2004. Adaptive Packet Sampling for
Accurate and Scalable Flow Measurement. In Proceedings of the 47th IEEE Global
Telecommunications Conference. GLOBECOM’04. 1448–1452.

[23] Chowdhury, S. R., Bari, M. F., Ahmed, R., and Boutaba, R. 2014. PayLess:
A Low Cost Network Monitoring Framework for Software Defined Networks. In Pro-
ceedings of the 14th IEEE/IFIP Network Operations and Management Symposium
(NOMS). 1–9.

[24] Cisco Systems Inc. Cisco IOS Switching Services Configuration
Guide, Release 12.2. http://www.cisco.com/c/en/us/td/docs/ios/12_2/switch/
configuration/guide/fswtch_c.html. Online. Accessed Mar. 2014.

[25] Cisco Systems Inc. NetFlow Export Datagram Formats. http:

//www.cisco.com/c/en/us/td/docs/net_mgmt/netflow_collection_engine/3-

6/user/guide/format.pdf. Online. Accessed Mar. 2014.

BIBLIOGRAPHY 169

[26] Cisco Systems Inc. 2005a. How To Calculate Bandwidth Utilization Us-
ing SNMP. http://www.cisco.com/image/gif/paws/8141/calculate_bandwidth_
snmp.pdf. Online. Accessed Apr. 2014.

[27] Cisco Systems Inc. 2005b. Random Sampled NetFlow. http://www.

cisco.com/c/en/us/td/docs/ios/12_0s/feature/guide/nfstatsa.pdf. Online.
Accessed Mar. 2014.

[28] Cisco Systems Inc. 2007. NetFlow Services Solutions Guide. http://www.

cisco.com/c/en/us/td/docs/ios/solutions_docs/netflow/nfwhite.pdf. On-
line. Accessed May 2014.

[29] Cisco Systems Inc. 2008a. Cisco IOS Flexible NetFlow Configuration
Guide – Release 12.4T. http://www.cisco.com/en/US/docs/ios/fnetflow/

configuration/guide/12_4t/fnf_12_4t_book.html. Online. Accessed Dec. 2013.

[30] Cisco Systems Inc. 2008b. Cisco IOS Flexible NetFlow Technol-
ogy. http://www.cisco.com/c/en/us/products/collateral/ios-nx-os-

software/flexible-netflow/product_data_sheet0900aecd804b590b.pdf. On-
line. Accessed May 2014.

[31] Cisco Systems Inc. 2013. Best Practices in Core Network Capac-
ity Planning. http://www.cisco.com/c/en/us/solutions/collateral/service-

provider/quantum/white_paper_c11-728551.pdf. Online. Accessed Aug. 2014.

[32] Claise, B. 2004. Cisco Systems NetFlow Services Export Version 9. RFC 3954.

[33] Claise, B., Dhandapani, G., Aitken, P., and Yates, S. 2011. Export of
Structured Data in IP Flow Information Export (IPFIX). RFC 6313.

[34] Claise, B. and Trammell, B. 2013. Information Model for IP Flow Information
Export (IPFIX). RFC 7012.

[35] Claise, B., Trammell, B., and Aitken, P. 2013. Specifications of the IP Flow
Information Export (IPFIX) Protocol for the Exchange of Flow Information. RFC
7011.

[36] Dainotti, A., Pescapé, A., and Claffy, K. C. 2012. Issues and Future Di-
rections in Traffic Classification. IEEE Network 26, 1, 35–40.

[37] de O. Schmidt, R., Hendriks, L., Pras, A., and van der Pol, R. 2014a.
OpenFlow-based Link Dimensioning. In Proceedings of the Innovating the Network
for Data-Intensive Science Workshop (INDIS), ACM/IEEE International Confer-
ence for High Performance Computing, Networking, Storage and Analysis. SC’14.

[38] de O. Schmidt, R. and Pras, A. 2011. Estimating bandwidth requirements
using flow-level measurements. In Proceedings of the 5th IFIP WG 6.6 Interna-
tional Conference on Autonomous Infrastructure, Management, and Security, PhD
Workshop. AIMS’11. 169–172.

170 BIBLIOGRAPHY

[39] de O. Schmidt, R., Pras, A., and Gomes, R. 2011. On the Evaluation of Self-
Addressing Strategies for Ad-Hoc Networks. In Proceedings of the 17th International
Workshop EUNICE. EUNICE’11. 31–42.

[40] de O. Schmidt, R., Sadre, R., Melnikov, N., Schönwälder, J., and Pras,
A. 2014b. Linking Network Usage Patterns to Traffic Gaussianity Fit. In Proceedings
of the 13th IFIP Networking Conference. Networking’14. 1–9.

[41] de O. Schmidt, R., Sadre, R., and Pras, A. 2013a. Gaussian Traffic Revisited.
In Proceedings of the 12th IFIP Networking Conference. Networking’13. 1–9.

[42] de O. Schmidt, R., Sadre, R., Sperotto, A., and Pras, A. 2013b.
Lightweight Link Dimensioning using sFlow Sampling. In Proceedings of the 9th
International Conference on Network and Services Management. CNSM’13. 152–
155.

[43] de O. Schmidt, R., Sadre, R., Sperotto, A., and Pras, A. 2014c. Impact
of Packet Sampling on Link Dimensioning. Submitted to IEEE Transactions on
Network and Service Management , 1–13.

[44] de O. Schmidt, R., Sadre, R., Sperotto, A., van den Berg, H., and Pras,
A. 2014d. A Hybrid Procedure for Efficient Link Dimensioning. Elsevier Computer
Networks 67, 252–269.

[45] de O. Schmidt, R., Sperotto, A., Sadre, R., and Pras, A. 2012a. Towards
Bandwidth Estimation using Flow-Level Measurements. In Proceedings of the 6th
IFIP WG 6.6 International Conference on Autonomous Infrastructure, Manage-
ment, and Security. AIMS’12. 127–138.

[46] de O. Schmidt, R., Sperotto, A., Sadre, R., and Pras, A. 2012b. To-
wards Bandwidth Estimation using Flow-level Measurements. In Student Poster at
TERENA Networking Conference. TNC’12.

[47] Drago, I., de O. Schmidt, R., Hofstede, R., Sperotto, A., Karimzadeh,
M., Haverkort, B. R., and Pras, A. 2013. Networking for the Cloud: Challenges
and Trends. Praxis der Informationsverarbeitung und Kommunikation, Special Issue
on Data Center Networking 36, 4, 207–214.

[48] Drago, I., Mellia, M., Munafò, M. M., Sperotto, A., Sadre, R., and
Pras, A. 2012. Inside Dropbox: Understanding Personal Cloud Storage Services.
In Proceedings of the ACM Internet Measurement Conference. IMC’12. 481–494.

[49] Fraleigh, C., Tobagi, F., and Diot, C. 2003. Provisioning IP Backbone
Networks to Support Latency Sensitive Traffic. In Proceedings of the 22nd Annual
Joint Conference of the IEEE Computer and Communications. INFOCOM’03. 375–
385.

BIBLIOGRAPHY 171

[50] Francois, F., Wang, N., Moessner, K., Georgoulas, S., and
de O. Schmidt, R. 2014. Leveraging MPLS Backup Paths for Distributed Energy-
Aware Traffic Engineering. IEEE Transactions on Network and Service Manage-
ment 11, 2, 235–249.

[51] Garćıa-Dorado, J. L., Finamore, A., Mellia, M., Meo, M., and Munafò,
M. M. 2012. Characterization of ISP Traffic: Trends, User Habits, and Access
Technology Impact. IEEE Transactions on Network and Service Management 9, 2,
142–155.

[52] Gehlen, V., Finamore, A., Mellia, M., and Munafò, M. M. 2012. Uncov-
ering the Big Players of the Web. In Proceedings of the 4th International Workshop
on Traffic Monitoring and Analysis. TMA’12. 15–28.

[53] Google. Iperf3. https://code.google.com/p/iperf/. Online. Accessed Feb.
2014.

[54] Haag, P. 2006. NetFlow Tools NfSen and NFDUMP. In Proceedings of the 18th
Annual FIRST Conference. FIRST’06.

[55] Hellemons, L., Hendriks, L., Hofstede, R., Sperotto, A., Sadre, R., and
Pras, A. 2012. SSHCure: A Flow-Based SSH Intrusion Detection System. In Pro-
ceedings of the 6th International Conference on Autonomous Infrastructure, Man-
agement and Security. AIMS’12. 86–97.

[56] Hofstede, R., Bartos, V., Sperotto, A., and Pras, A. 2013a. Towards
Real-Time Intrusion Detection for NetFlow and IPFIX. In Proceedings of the 9th
International Conference on Network and Service Management. CNSM’13. 227–234.

[57] Hofstede, R., Drago, I., Sperotto, A., Sadre, R., and Pras, A. 2013b.
Measurement Artifacts in NetFlow Data. In Proceedings of the 14th International
Conference on Passive and Active Measurement. PAM’13. 1–10.

[58] Hofstede, R., Čeleda, P., Trammell, B., Drago, I., Sadre, R., Sperotto,
A., and Pras, A. 2014. Flow Monitoring Explained: From Packet Capture to Data
Analysis with NetFlow and IPFIX. IEEE Communications Surveys & Tutorials, 1–
29.

[59] Hulboj, M. M. and Jurga, R. E. 2009. CERN Investigation of Network Be-
haviour and Anomaly Detection. In Proceedings of the 12th International Symposium
on Recent Advances in Intrusion Detection. RAID’09. 353–354.

[60] IEEE. IEEE Standard for Local and metropolitan area networks – Link Aggre-
gation. http://tele.sj.ifsc.edu.br/~msobral/IER/802.1AX-2008.pdf. Online.
Accessed Jan. 2014.

[61] Inacio, C. M. and Trammel, B. 2010. YAF: Yet Another Flowmeter. In Pro-
ceedings of the 24th Large Installation System Administration Conference. LISA’10.
1–12.

172 BIBLIOGRAPHY

[62] InMon Corp. 2003. sFlow Agent Software Description. http://www.inmon.com/
technology/InMon_Agentv5.pdf. Online. Accessed Dec. 2013.

[63] Jarschel, M. and Pries, R. 2012. An OpenFlow-Based Energy-Efficient
Data Center Approach. In Proceedings of the ACM SIGCOMM conference. SIG-
COMM’12. 87–88.

[64] Jarschel, M., Zinner, T., Höhn, T., and Tran-Gia, P. 2013. On the Accu-
racy of Leveraging SDN for Passive Network Measurements. In Proceedings of the
Australasian Telecommunication Networks and Applications Conference (ATNAC).
41–46.

[65] Jasinska, E. 2006. sFlow: I can feel your traffic. In Proceedings of the 23rd
Chaos Communication Congress. 23C3. 1–8.

[66] Jiang, H. and Drovolis, C. 2003. Source-Level IP Packet Bursts: Causes and
Effects. In Proceedings of the the 3rd ACM SIGCOMM Conference on Internet
Measurement. IMC’03. 301–306.

[67] Johnston, W. E., Dart, E., Ernst, M., and Tierney, B. 2013. Enabling high
throughput in widely distributed data management and analysis systems: Lessons
from the LHC. In Proceedings of the TERENA Networking Conference. TNC’13.
1–19.

[68] Jose, L., Yu, M., and Rexford, J. 2011. Online Measurement of Large Traf-
fic Aggregates on Commodity Switches. In Proceedings of the Workshop on Hot
Topics in Management of Internet Cloud, and Enterprise Network and Services.
Hot-ICE’11. 1–6.

[69] Juniper Networks. 2011. Juniper Flow Monitoring. http://www.juniper.net/
us/en/local/pdf/app-notes/3500204-en.pdf. Online. Accessed Jun. 2014.

[70] Kekely, L., Puš, V., and Kořenek, J. 2014. Software Defined Monitoring
of Application Protocols. In Proceedings of the 33rd Annual IEEE International
Conference on Computer Communications. INFOCOM’14. 1–9.

[71] Kilpi, J. and Norros, I. 2002. Testing the Gaussian approximation of aggregate
traffic. In Proceedings of the 2nd ACM SIGCOMM Internet Measurement Workshop.
IMW’02. 49–61.

[72] Klemm, A., , Lindemann, C., and Lohmann, M. 2003. Modeling IP Traffic
Using the Batch Markovian Arrival Process. Performance Evaluation 54, 149–173.

[73] Lan, K. and Heidemann, J. 2006. A Measurement Study of Correlation of
Internet Flow Characteristics. Computer Networks 50, 1, 46–62.

[74] Lautenschlaeger, W. and Feller, F. 2012. Light-Weight Traffic Parameter
Estimation for On-Line Bandwidth Provisioning. In Proceedings of the 24th Inter-
national Teletraffic Congress. ITC’12. 1–8.

BIBLIOGRAPHY 173

[75] Leland, W. E., Taqqu, M. S., Willinger, W., and Wilson, D. V. 1994. On
the Self-Similar Nature of Ethernet Traffic. IEEE/ACM Transactions on Network-
ing 2, 1, 1–15.

[76] Lucente, P. 2012. pmacct: a free open-source traffic accounting tool. http:

//www.pmacct.net/lucente_pmacct_esnog10.pdf. Online. Accessed Aug. 2014.

[77] Mai, J., Chuah, C.-N., Sridharan, A., Ye, T., and Zang, H. 2006. Is Sampled
Data Sufficient for Anomaly Detection? In Proceedings of the 6th ACM SIGCOMM
Internet Measurement Conference. IMC’06. 165–176.

[78] Makkonen, L. 2008. Bringing Closure to the Plotting Position Controversy.
Communications in Statistics – Theory and Methods 37, 3, 460–467.

[79] Makkonen, L., Pajari, M., and Tikanmäki, M. 2013. Closure to “Problems
in the extreme values analysis”. Elsevier Structural Safety 40, 65–67.

[80] Mandjes, M. and van de Meent, R. 2009. Resource Dimensioning Through
Buffer Sampling. IEEE/ACM Transactions on Networking 17, 5, 1631–1644.

[81] MAWI. Working Group Traffic Archive. http://mawi.wide.ad.jp. Online.
Accessed Dec. 2013.

[82] McCloghrie, K. and Rose, M. T. 1991. Management Information Base for
Network Management of TCP/IP-based internets: MIB-II. RFC 1213.

[83] McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peter-
son, L., Rexford, J., Shenker, S., and Turner, J. 2008. OpenFlow: Enabling
Innovation in Campus Networks. ACM CCR 38, 2, 69–74.

[84] Moshref, M., Yu, M., and Govindan, R. 2013. Resource/Accuracy Tradeoffs
in Software-Defined Measurement. In Proceedings of the ACM SIGCOMM Workshop
on Hot Topics in Software Defined Networking (HotSDN). 73–78.

[85] Moshref, M., Yu, M., Govindan, R., and Vahdat, A. 2014. DREAM: Dy-
namic Resource Allocation for Software-defined Measurement. In Proceedings of the
ACM SIGCOMM. 419–430.

[86] Norros, I. 1994. A storage model with self-similar input. Queueing Sys-
tems 16, 3–4, 387–396.

[87] Ntop. nprobe – an extensible netflow v5/v9/ipfix gpl probe for ipv4/v6. http:

//www.ntop.org/products/nprobe/. Online. Accessed Feb. 2014.

[88] Ntop. pf ring – High-speed packet capture, filtering and analysis. http://www.

ntop.org/products/pf_ring/. Online. Accessed Feb. 2014.

[89] Open Networking Foundation. 2009. OpenFlow Switch Specification –
Version 1.0.0. http://archive.openflow.org/documents/openflow-spec-v1.0.

0.pdf. Online. Accessed Jun. 2014.

174 BIBLIOGRAPHY

[90] Open Networking Foundation. 2012. OpenFlow Switch Specification – Ver-
sion 1.3.1. https://www.opennetworking.org/images/stories/downloads/sdn-

resources/onf-specifications/openflow/openflow-spec-v1.3.1.pdf. Online.
Accessed Jun. 2014.

[91] Open Networking Foundation. 2013. OpenFlow Switch Specification – Ver-
sion 1.4.0. https://www.opennetworking.org/images/stories/downloads/sdn-

resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf. Online.
Accessed Jun. 2014.

[92] Papagiannaki, K. 2003. Provisioning IP Backbone Networks Based on Measure-
ments. Ph.D. thesis, University of London.

[93] Papagiannaki, K., Cruz, R., and Diot, C. 2003. Network Performance Mon-
itoring at Small Time Scales. In Proceedings of the ACM Internet Management
Conference. IMC’03. 295–300.

[94] Paxson, V. and Floyd, S. 1995. Wide-Area Traffic: The Failure of Poisson
Modeling. IEEE/ACM Transactions on Networking 3, 3, 226–244.

[95] Phaal, P., Panchen, S., and McKee, N. 2001. InMon Corporation’s sFlow: A
Method for Monitoring Traffic in Switched and Routed Networks. RFC 3176.

[96] Pras, A., Nieuwenhuis, L., van de Meent, R., and Mandjes, M. 2009.
Dimensioning Network Links: A New Look at Equivalent Bandwidth. IEEE Net-
work 23, 2, 5–10.

[97] Puš, V. 2012. Hardware Acceleration for Measurements in 100 Gp/s Networks.
In Proceedings of the 6th IFIP WG 6.6 International Conference on Autonomous
Infrastructure, Management, and Security. AIMS’12. 46–49.

[98] QoSient. Argus. http://qosient.com/argus/. Online. Accessed Jun. 2014.

[99] Quittek, J., Zseby, T., Claise, B., and Zander, S. 2004. Requirements for
IP Flow Information Export (IPFIX). RFC 3917.

[100] Sarvotham, S., Riedi, R., and Baraniuk, R. 2001. Connection-level Anal-
ysis and Modeling of Network Traffic. In Proceedings of the 1st ACM SIGCOMM
Workshop on Internet Measurement. IMW’01. 99–103.

[101] Schönwälder, J. 2008. Simple Network Management Protocol (SNMP) Con-
text EngineID Discovery. RFC 5343.

[102] sFlow.org. 2003. Traffic Monitoring using sFlow. http://www.sflow.org/

sFlowOverview.pdf. Online. Accessed Mar. 2014.

[103] Sharafat, A. R., Das, S., Parulkar, G., and McKeown, N. 2011. MPLS-
TE and MPLS VPNs with OpenFlow. In Proceedings of the ACM SIGCOMM
conference. SIGCOMM’11. 452–453.

BIBLIOGRAPHY 175

[104] SimpleWeb. Simpleweb. http://www.simpleweb.org. Online. Accessed Dec.
2013.

[105] SteinBerger, J., Schehlmann, L., Abt, S., and Baier, H. 2013. Anomaly
Detection and Mitigation at Internet Scale: A Survey. In Proceedings of the 7th
International Conference on Autonomous Infrastructure, Management and Security.
AIMS’13. 49–60.

[106] The Simple Times. 2002. The quarterly newsletter of snmp technology, com-
ment, and events – volume 10, number 1. http://www.simple-times.org/pub/

simple-times/pdf/vol10-num1.pdf. Online. Accessed Jul. 2014.

[107] Tongaonkar, A., Keralapura, R., and Nucci, A. 2012. Challenges in Net-
work Application Identification. In Proceedings of the 5th USENIX Conference on
Large-Scale Exploits and Emergent Threats. LEET’12. 1–1.

[108] Tootoonchian, A., Ghobadi, M., and Ganjali, Y. 2010. OpenTM: Traffic
Matrix Estimator for OpenFlow Networks. In 11th PAM. 201–210.

[109] van de Meent, R. 2006. Network Link Dimensioning: A Measurement &
Modeling Based Approach. Ph.D. thesis, University of Twente. ISSN 1381-3617.

[110] van de Meent, R., Mandjes, M., and Pras, A. 2006. Gaussian Traffic Every-
where? In Proceedings of the IEEE International Conference in Communications.
ICC’06. 573–578.

[111] van de Meent, R., Pras, A., Mandjes, M., van den Berg, H., and
Nieuwenhuis, L. 2003. Traffic Measurements for Link Dimensioning, A Case of
Study. In Proceedings of the 14th IFIP/IEEE Workshop on Distributed Systems:
Operations and Management. DSOM’03.

[112] van den Berg, H., Mandjes, M., van de Meent, R., Pras, A., Roijers, F.,
and Venemans, P. 2006. QoS-aware bandwidth provisioning for IP network links.
Elsevier Computer Networks 50, 5, 631–647.

[113] van der Pol, R., Bredel, M., Barczyk, A., Overeinder, B., van
Adrichem, N., and Kuipers, F. 2013. Experiences with MPTCP in an interconti-
nental OpenFlow network. In Proceedings of the TERENA Networking Conference.
TNC’13. 1–8.

[114] Vilardi, R., Grieco, L. A., Barakat, C., and Boggia, G. 2013. Lightweight
Enhanced Monitoring for High-Speed Networks. Transactions on Emerging Telecom-
munications Technologies, 1–19. Online. Accessed Dec. 2013.

[115] Yu, C., Lumezanu, C., Zhang, Y., Singh, V., Jiang, G., and Madhyastha,
H. V. 2013a. FlowSense: Monitoring Network Utilization with Zero Measurement
Cost. In 14th PAM. 31–41.

176 BIBLIOGRAPHY

[116] Yu, M., Jose, L., and Miao, R. 2013b. Software Defined Traffic Measurement
with OpenSketch. In Proceedings of the 13th USENIX Conference on Networked
Systems Design and Implementation (NSDI). 29–42.

[117] Yu, Y., Qian, C., and Li, X. 2014. Distributed Collaborative Monitoring in
Software Defined Networks. In Proceedings of the ACM SIGCOMM Workshop on
Hot Topics in Software Defined Networking (HotSDN). 1–7.

[118] Zhang, Y. 2013. An Adaptive Flow Counting Method for Anomaly Detec-
tion in SDN. In Proceedings of the 9th ACM Conference on Emerging Networking
Experiments and Technologies (CoNEXT). 25–30.

[119] Zseby, T., Molina, M., Duffield, N., Niccolini, S., and Raspall, F. 2009.
Sampling and Filtering Techniques for IP Packet Selection. RFC 5475.

Acronyms

AMX-IS Amsterdam Internet Exchange

Argus Audit Record Generation and Utilization System

CAIDA Center for Applied Internet Data Analysis

CDF Cumulative Distribution Function

CERN European Organization for Nuclear Research

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IANA Internet Assigned Numbers Authority

IETF Internet Engineering Task Force

IP Internet Protocol

IPFIX IP Flow Information Export

IRTF Internet Research Task Force

ISP Internet Service Provider

MIB Management Information Base

MPLS Multiprotocol Label Switching

MRTG Multi Router Traffic Grapher

NNTP Network News Transfer Protocol

OVS Open vSwitch

Q-Q Quantile-quantile

QoE Quality of Experience

QoS Quality of Service

RRD Round-Robin Database

SDN Software-Defined Networking

178 ACRONYMS

SLA Service-Level Agreement

SNMP Simple Network Management Protocol

TCP Transmission Control Protocol

UDP User Datagram Protocol

VLAN Virtual Local Area Network

VoIP Voice over IP

VPN Virtual Private Network

WIDE Widely Integrated Distributed Environment

YAF Yet Another Flowmeter

About the author

I was born in Passo Fundo, Rio Grande do Sul, Brazil, on
April 2nd, 1985. I received my Bachelor of Science (B.Sc.)
degree in Computer Science in 2007 from the University of
Passo Fundo, Brazil, and my Master of Science (M.Sc.) de-
gree in Computer Science in 2010 from the Federal Univer-
sity of Pernambuco, Brazil. In the period from Nov. 2010 to
Nov. 2014 I was a Ph.D. candidate at the Design and Anal-
ysis of Communication Systems (DACS) group of the Uni-
versity of Twente, the Netherlands, under the supervision of
Prof. Dr. ir. Aiko Pras and Prof. Dr. Hans van den Berg.
During this period I had the opportunity to take part in
four research projects, namely, EU FP7 UniverSelf, EU FP7

Flamingo NoE, EU FP7 MCN and SURFnet’s Gigaport3 project for Next-Generation
Networks. Below is a list of papers I published (or submitted) during the time I was
a Ph.D. candidate at DACS, sorted in reverse chronological order:

• R. de O. Schmidt, R. Sadre, A. Sperotto and A. Pras, Impact of Packet Sampling
on Link Dimensioning. Under review (IEEE TNSM).

• N. Bouten, R. de O. Schmidt, J. Famaey, S. Latré, A. Pras and F. De Turck,
QoE-Driven In-Network Optimization for Adaptive Video Streaming Based on
Packet Sampling Measurements. Under review (COMNET).

• R. de O. Schmidt, H. van den Berg and A. Pras, Measurement-Based Network
Link Dimensioning. Under review (IFIP/IEEE IM 2015).

• R. de O. Schmidt, L. Hendriks, A. Pras and R. van der Pol, OpenFlow-based
Link Dimensioning. Demo at Innovating the Network for Data-Intensive Science
Workshop (INDIS), ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis (SC), 2014.

• R. de O. Schmidt, R. Sadre, A. Sperotto, H. van den Berg and A. Pras, A Hybrid
Procedure for Efficient Link Dimensioning. Computer Networks (COMNET),
67, 252–269, 2014.

• F. Francois, N. Wang, K. Moessner, S. Georgoulas and R. de O. Schmidt, Lever-
aging MPLS Backup Paths for Distributed Green Traffic Engineering. IEEE
Transactions on Network and Service Management (TNSM), 11(2), 235–249,
2014.

180 ABOUT THE AUTHOR

• R. de O. Schmidt, R. Sadre, N. Melnikov, J. Schönwälder and A. Pras, Linking
Network Usage Patterns to Traffic Gaussianity Fit. In proceedings of the 13th
IFIP Networking Conference, 2014.

• I. Drago, R. de O. Schmidt, R. Hofstede, A. Sperotto, M. Karimzadeh, B.
R. Haverkort and A. Pras, Networking for the Cloud: Challenges and Trends.
Praxis der Informationsverarbeitung und Kommunikation (PIK), Special Issue
on Data Center Networking, 36(4), 1–8, Dec. 2013. (invited paper)

• R. de O. Schmidt, R. Sadre and A. Pras, Gaussian Traffic Revisited. In pro-
ceedings of the 12th IFIP Networking Conference, 2013.

• R. de O. Schmidt, R. Sadre, A. Sperotto and A. Pras, Lightweight Link Dimen-
sioning using sFlow Sampling. In proceedings of the 9th International Confer-
ence on Network and Services Management (CNSM), 152–155, 2013.

• M. Hoogesteger, R. de O. Schmidt, A. Sperotto and A. Pras, Reports on Internet
Traffic Statistics. Student Poster at TERENA Networking Conference (TNC),
2013.

• R. de O. Schmidt, A. Sperotto, R. Sadre and A. Pras, Estimating Bandwidth
Requirements using Flow-level Measurements. Student Poster at TERENA Net-
working Conference (TNC), 2012.

• R. de O. Schmidt, A. Sperotto, R. Sadre and A. Pras, Towards Bandwidth Esti-
mation using Flow-level Measurements. In proceedings of the 6th International
Conference on Autonomous Infrastructure, Management and Security (AIMS),
LNCS 7279, 127–138, 2012.

• R. de O. Schmidt and A. Pras, Estimating bandwidth requirements using flow-
level measurements. In proceedings of the 5th International Conference on Au-
tonomous Infrastructure, Management and Security (AIMS), LNCS 6734, 169–
172, 2011.

• R. de O. Schmidt, A. Pras and R. Gomes, On the Evaluation of Self-Addressing
Strategies for Ad-Hoc Networks. In proceedings of the 17th International Work-
shop EUNICE, LNCS 6955, 31–42, 2011.

• R. de O. Schmidt, R. Gomes and A. Pras, Evaluating Self-Addressing Protocols
for Ad-Hoc Networks. Student Poster at NWO - ASCI - ICT.OPEN, 2011.

• R. Gomes and R. de O. Schmidt, Evaluating automatic pools distribution tech-
niques to self-configured networks. In proceedings of the 16th IEEE Symposium
on Computers and Communications (ISCC), 658–663, 2011.

• A. Pras, A. Sperotto, G. C. Moreira Moura, I. Drago, R. R. R. Barbosa, R.
Sadre and R. de O. Schmidt, Attacks by “Anonymous” WikiLeaks Proponents
not Anonymous. Technical Report TR-CTIT-10-41, University of Twente, 2010.

